Research Article
BibTex RIS Cite

Diyet Lifi Kaynağı Olarak Kabak (Cucurbita pepo L.) Posası Unu: Kimyasal, Fizikokimyasal ve Teknolojik Özellikler

Year 2024, Volume: 22 Issue: 1, 14 - 22, 29.03.2024
https://doi.org/10.24323/akademik-gida.1460957

Abstract

Araştırmada, çekirdekleri için kullanılan kabağın atıklarından elde edilen kabak posası ununun (PPF) karakteristik özellikleri belirlenmiştir. Çekirdekleri çıkarılmış kabukları soyulmuş olan kabakların posa kısımları bu amaç için kullanılmıştır. Kabak posası ununun kompozisyonu, toplam diyet lifi (TDF), çözünmez diyet lifi (IDF), çözünebilir diyet lifi (SDF), mineral madde içeriği, amino asit içeriği, β-karoten içeriği, pH, renk, camsı geçiş sıcaklığı (Tg), su tutma kapasitesi (WHC), yağ tutma kapasitesi (OHC), şişme kapasitesi (SC), emülsiyon stabilitesi (ES) ve emülsiyon aktivite (EA) değerleri tespit edilmiştir. PPF’nin düşük lipid (%0.72±0.06), yüksek kül (%8.34±0.19) içeriğine sahip olduğu belirlenmiştir. pH, Tg, TDF, IDF, SDF, WHC, OHC ve SC değerleri sırasıyla 5.61±0.01, 19.19±1.86°C, %26.13±0.17, %19.82±0.18, %6.31±0.35, 12.91±0.40 g/g, 3.74±0.10 g/g, 12.48±0.57 mL/g olarak belirlenmiştir. Kabak posası ununun glutamik asit, glisin ve aspartik asit bakımından zengin bir kaynak olduğu ve majör elementlerden potasyum, minör elementlerden ise demiri yüksek seviyede içerdiği tespit edilmiştir.

References

  • [1] Crizel, T.D.M., Hermes, V.S., Rios, A.D.O., Flôres, S.H. (2016). Evaluation of bioactive compounds, chemical and technological properties of fruits byproducts powder. Journal of Food Science and Technology, 53, 4067–4075.
  • [2] Codex Alimentarius Commission. (2019). Codex alimentarius commission and report of the 30th session of the codex committee on nutrition and foods for special dietary uses. Retrieved June 7.
  • [3] Maphosa, Y., Jideani, V.A. (2016). Dietary fiber extraction for human nutrition – A review. Food Reviews International, 32, 98–115.
  • [4] Guiné, R.P., Ferreira, M., Correia, P., Duarte, J., Leal, M., Rumbak, I., Barić, I.C., Komes, D., Satalić, Z., Sarić, M.M., Tarcea, M., Fazakas, Z., Jovanoska, D., Vanevski, D., Vittadini, E., Pellegrini, N., Szűcs, V., Harangozó, J., EL-Kenawy, A., EL-Shenawy, O., Yalçın, E., Kösemeci, C., Klava, D., Straumite, E. (2016). Knowledge about dietary fibre: a fibre study framework. International Journal of Food Sciences and Nutrition, 67, 1–8.
  • [5] Bisognin, D.A. 2002). Origin and evolution of cultivated cucurbits. Ciência Rural, 32, 715–723.
  • [6] Achilonu, M.C., Nwafor, I.C., Umesiobi, D.O., Sedibe, M.M. (2018). Biochemical proximates of pumpkin (Cucurbitaeae spp.) and their beneficial effects on the general well-being of poultry species. Journal of Animal Physiology and Animal Nutrition, 102, 5–16.
  • [7] Seymen, M., Türkmen, Ö., Paksoy, M., Fidan, S. (2012). Determination of some morphological characteristics of edible seed pumpkin (Cucurbita pepo L.) genotypes. Cucurbitaceae 2012, Proceedings of the Xth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. October 15-18th, 2012, Antalya, Türkiye, pp. 739–749.
  • [8] TUIK. (2023). Turkish Statistical Institute, Crop Production Statistics, Ankara, Türkiye.
  • [9] AOAC. (1997). Official methods of analysis of AOAC International (16th ed.,). Washington, DC: Association of Official Analytical Chemists.
  • [10] Konings, E.J., Roomans, H.H. (1997). Evaluation and validation of an LC method for the analysis of carotenoids in vegetables and fruit. Food Chemistry, 59, 599–603.
  • [11] Stevenson, D.G., Yoo, S.H., Hurst, P.L., Jane, J.L. (2005). Structural and physicochemical characteristics of winter squash (Cucurbita maxima D.) fruit starches at harvest. Carbohydrate Polymers, 59, 153–163.
  • [12] López-Marcos, M.C., Bailina, C., Viuda-Martos, M., Pérez-Alvarez, J.A., Fernández-López, J. (2015). Properties of dietary fibers from agroindustrial coproducts as source for fiber-enriched foods. Food and Bioprocess Technology, 8, 2400-2408.
  • [13] Gómez-Ordóñez, E., Jiménez-Escrig, A., Rupérez, P. (2010). Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Research International, 43, 2289–2294.
  • [14] Chau, C.F., Huang, Y.L. (2003). Comparison of the chemical composition and physicochemical properties of different fibres prepared from peel of Citrus sinensis L. cv. Liucheng. Journal of Agricultural and Food Chemistry, 51, 2615–2618.
  • [15] Anderson, R.A., Conway, H.F. Pfeifer, V.F., Griffin E.L. (1969). Gelatinization of corn grits by roll-and extrusion-cooking. Cereal Science Today, 14, 4-11.
  • [16] Ahmed, J., Al-Foudari, M., Al-Salman, F., Almusallam, A.S. (2014). Effect of particle size and temperature on rheological, thermal, and structural properties of pumpkin flour dispersion. Journal of Food Engineering, 124, 43–53.
  • [17] Nakhon, P.P.S., Jangchud, K., Jangchud, A., Prinyawiwatkul, W. (2017). Comparisons of physicochemical properties and antioxidant activities among pumpkin (Cucurbita moschata L.) flour and isolated starches from fresh pumpkin or flour. International Journal of Food Science and Technology, 52, 2436–2444.
  • [18] Kalala, G., Kambashi, B., Everaert, N., Beckers, Y., Richel, A., Pachikian, B., Neyrinck, A.M., Delzenne, N.M., Bindelle, J. (2018). Characterization of fructans and dietary fibre profiles in raw and steamed vegetables. International Journal of Food Sciences and Nutrition, 69, 682–689.
  • [19] Verma, A.K., Banerjee, R. (2010). Dietary fibre as functional ingredient in meat products: a novel approach for healthy living – a review. Journal of Food Science and Technology, 47, 247–257.
  • [20] Klosterbuer, A., Roughead, Z.F., Slavin, J. (2011). Benefits of dietary fiber in clinical nutrition. Nutrition in Clinical Practice, American Society for Parenteral and Enteral Nutrition, 26, 625–635.
  • [21] Namitha, K.K., Negi, P.S. (2010). Chemistry and Biotechnology of Carotenoids. Critical Reviews in Food Science and Nutrition, 50, 728–760.
  • [22] Rico, X., Gullón, B., Alonso, J.L., Yáñez, R. (2020). Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Research International, 132, 109086.
  • [23] Fernández-Segovia, I., Lerma-García, M.J., Fuentes, A., Barat, J.M. (2018). Characterization of Spanish powdered seaweeds: Composition, antioxidant capacity and technological properties. Food Research International, 111, 212–219.
  • [24] Loughrill, E., Wray, D., Christides, T., Zand, N. (2017). Calcium to phosphorus ratio, essential elements and vitamin D content of infant foods in the UK: Possible implications for bone health. Maternal and Child Nutrition, 13, e12368.
  • [25] Mumyapan, M. (2021). The use of pumpkin flour as a dietary fiber source in bologna type sausage production. Nevşehir Hacı Bektaş Veli University, Ensitute of Science, M.Sc. Thesis, 2021, Nevşehir, Türkiye. In Turkish.
  • [26] Wessells, K.R., Brown, K.H. (2012). Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. Plos One, 7, 1–11.
  • [27] Kubachka, K.M., Hanley, T., Mantha, M., Wilson, R.A., Falconer, T.M., Kassa, Z., Oliveira, A., Landero, J., Caruso, J. (2017). Evaluation of selenium in dietary supplements using elemental speciation. Food Chemistry, 218, 313–320.
  • [28] Aziah, A.N., Komathi, C.A. (2009). Physicochemical and functional properties of peeled and unpeeled pumpkin flour. Journal of Food Science, 74, 328–333.
  • [29] Champion, D., Le Meste, M., Simatos, D. (2000). Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range. Trends in Food Science and Technology, 11, 41-55.
  • [30] López-Vargas, J.H., Fernández-López, J., Pérez-Álvarez, J.A., Viuda-Martos, M. (2013). Chemical, physico-chemical, technological, antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Food Research International, 51, 756–763.
  • [31] Cui, J., Lian, Y., Zhao, C., Du, H., Han, Y., Gao, W., Xiao, H., Zheng, J. (2019). Dietary fibers from fruits and vegetables and their health benefits via modulation of gut microbiota. Comprehensive Reviews in Food Science and Food Safety, 18, 1514-1532.
  • [32] Viuda-Martos, M., Ruiz-Navajas, Y., Martin-Sánchez, A., Sánchez-Zapata, E., Fernández-López, J., Sendra, E., Sayas-Barberá, E., Navarro, C., Pérez-Álvarez, J.A. (2012). Chemical, physico-chemical and functional properties of pomegranate (Punica granatum L.) bagasses powder co-product. Journal of Food Engineering, 110, 220–224.
  • [33] Martínez, R., Torres, P., Meneses, M.A., Figueroa, J.G., Pérez-Álvarez, J.A., Viuda-Martos, M. (2012). Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chemistry, 135, 1520–1526.
  • [34] Fernández‐López, J., Sendra‐Nasdal, E., Navarro, C., Sayas, E., Viuda‐Martos, M., Alvarez, J.A.P. (2009). Storage stability of a high dietary fibre powder from orange by-products. International Journal of Food Science and Technology, 44, 748–756.
  • [35] Martínez-Las Heras, R., Landines, E.F. Heredia, A., Castelló, M.L., Andrés, A. (2017). Influence of drying process and particle size of persimmon fibre on its physicochemical, antioxidant, hydration and emulsifying properties. Journal of Food Science and Technology, 54, 2902–2912.
  • [36] Huber, E., Francio, D.L., Biasi, V., Mezzomo, N., Ferreira, S.R.S. (2016). Characterization of vegetable fiber and its use in chicken burger formulation. Journal of Food Science and Technology, 53, 3043–3052.
  • [37] Lin, M., Ryu, G.H. (2014). Effects of thermomechanical extrusion and particle size reduction on bioconversion rate of corn fiber for ethanol production. Cereal Chemistry, 91, 366–373.

Pumpkin (Cucurbita pepo L.) Pulp Flour as a Source of Dietary Fiber: Chemical, Physicochemical and Technological Properties

Year 2024, Volume: 22 Issue: 1, 14 - 22, 29.03.2024
https://doi.org/10.24323/akademik-gida.1460957

Abstract

In this study, the characteristic properties of pumpkin pulp flour (PPF) obtained from the waste of the pumpkin seed production were determined. The pulp parts of the de-seeded and peeled pumpkins were used for this purpose. Proximate composition, total dietary fiber (TDF), insoluble dietary fiber (IDF), soluble dietary fiber (SDF), mineral content, amino acid content, β-carotene content, pH, color, glass transition temperature (Tg), water holding capacity (WHC), oil holding capacity (OHC), swelling capacity (SC), emulsion stability (ES) and emulsion activity (EA) values of PPF were determined. PPF had a low lipid content (0.72±0.06%) and a high ash content (8.34±0.19%). The pH, Tg, TDF, IDF, SDF, WHC, OHC and SC values are 5.61±0.01, 19.19±1.86°C, 26.13±0.17%, 19.82±0%, 6.31%±0.35, 12.91±0.40 g/g, 3.74±0.10 g/g, 12.48±0.57 mL/g, respectively. PPF were a rich source of glutamic acid, glycine, and aspartic acid, and contains high levels of potassium among major elements, and iron among minor elements.

References

  • [1] Crizel, T.D.M., Hermes, V.S., Rios, A.D.O., Flôres, S.H. (2016). Evaluation of bioactive compounds, chemical and technological properties of fruits byproducts powder. Journal of Food Science and Technology, 53, 4067–4075.
  • [2] Codex Alimentarius Commission. (2019). Codex alimentarius commission and report of the 30th session of the codex committee on nutrition and foods for special dietary uses. Retrieved June 7.
  • [3] Maphosa, Y., Jideani, V.A. (2016). Dietary fiber extraction for human nutrition – A review. Food Reviews International, 32, 98–115.
  • [4] Guiné, R.P., Ferreira, M., Correia, P., Duarte, J., Leal, M., Rumbak, I., Barić, I.C., Komes, D., Satalić, Z., Sarić, M.M., Tarcea, M., Fazakas, Z., Jovanoska, D., Vanevski, D., Vittadini, E., Pellegrini, N., Szűcs, V., Harangozó, J., EL-Kenawy, A., EL-Shenawy, O., Yalçın, E., Kösemeci, C., Klava, D., Straumite, E. (2016). Knowledge about dietary fibre: a fibre study framework. International Journal of Food Sciences and Nutrition, 67, 1–8.
  • [5] Bisognin, D.A. 2002). Origin and evolution of cultivated cucurbits. Ciência Rural, 32, 715–723.
  • [6] Achilonu, M.C., Nwafor, I.C., Umesiobi, D.O., Sedibe, M.M. (2018). Biochemical proximates of pumpkin (Cucurbitaeae spp.) and their beneficial effects on the general well-being of poultry species. Journal of Animal Physiology and Animal Nutrition, 102, 5–16.
  • [7] Seymen, M., Türkmen, Ö., Paksoy, M., Fidan, S. (2012). Determination of some morphological characteristics of edible seed pumpkin (Cucurbita pepo L.) genotypes. Cucurbitaceae 2012, Proceedings of the Xth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. October 15-18th, 2012, Antalya, Türkiye, pp. 739–749.
  • [8] TUIK. (2023). Turkish Statistical Institute, Crop Production Statistics, Ankara, Türkiye.
  • [9] AOAC. (1997). Official methods of analysis of AOAC International (16th ed.,). Washington, DC: Association of Official Analytical Chemists.
  • [10] Konings, E.J., Roomans, H.H. (1997). Evaluation and validation of an LC method for the analysis of carotenoids in vegetables and fruit. Food Chemistry, 59, 599–603.
  • [11] Stevenson, D.G., Yoo, S.H., Hurst, P.L., Jane, J.L. (2005). Structural and physicochemical characteristics of winter squash (Cucurbita maxima D.) fruit starches at harvest. Carbohydrate Polymers, 59, 153–163.
  • [12] López-Marcos, M.C., Bailina, C., Viuda-Martos, M., Pérez-Alvarez, J.A., Fernández-López, J. (2015). Properties of dietary fibers from agroindustrial coproducts as source for fiber-enriched foods. Food and Bioprocess Technology, 8, 2400-2408.
  • [13] Gómez-Ordóñez, E., Jiménez-Escrig, A., Rupérez, P. (2010). Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Research International, 43, 2289–2294.
  • [14] Chau, C.F., Huang, Y.L. (2003). Comparison of the chemical composition and physicochemical properties of different fibres prepared from peel of Citrus sinensis L. cv. Liucheng. Journal of Agricultural and Food Chemistry, 51, 2615–2618.
  • [15] Anderson, R.A., Conway, H.F. Pfeifer, V.F., Griffin E.L. (1969). Gelatinization of corn grits by roll-and extrusion-cooking. Cereal Science Today, 14, 4-11.
  • [16] Ahmed, J., Al-Foudari, M., Al-Salman, F., Almusallam, A.S. (2014). Effect of particle size and temperature on rheological, thermal, and structural properties of pumpkin flour dispersion. Journal of Food Engineering, 124, 43–53.
  • [17] Nakhon, P.P.S., Jangchud, K., Jangchud, A., Prinyawiwatkul, W. (2017). Comparisons of physicochemical properties and antioxidant activities among pumpkin (Cucurbita moschata L.) flour and isolated starches from fresh pumpkin or flour. International Journal of Food Science and Technology, 52, 2436–2444.
  • [18] Kalala, G., Kambashi, B., Everaert, N., Beckers, Y., Richel, A., Pachikian, B., Neyrinck, A.M., Delzenne, N.M., Bindelle, J. (2018). Characterization of fructans and dietary fibre profiles in raw and steamed vegetables. International Journal of Food Sciences and Nutrition, 69, 682–689.
  • [19] Verma, A.K., Banerjee, R. (2010). Dietary fibre as functional ingredient in meat products: a novel approach for healthy living – a review. Journal of Food Science and Technology, 47, 247–257.
  • [20] Klosterbuer, A., Roughead, Z.F., Slavin, J. (2011). Benefits of dietary fiber in clinical nutrition. Nutrition in Clinical Practice, American Society for Parenteral and Enteral Nutrition, 26, 625–635.
  • [21] Namitha, K.K., Negi, P.S. (2010). Chemistry and Biotechnology of Carotenoids. Critical Reviews in Food Science and Nutrition, 50, 728–760.
  • [22] Rico, X., Gullón, B., Alonso, J.L., Yáñez, R. (2020). Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Research International, 132, 109086.
  • [23] Fernández-Segovia, I., Lerma-García, M.J., Fuentes, A., Barat, J.M. (2018). Characterization of Spanish powdered seaweeds: Composition, antioxidant capacity and technological properties. Food Research International, 111, 212–219.
  • [24] Loughrill, E., Wray, D., Christides, T., Zand, N. (2017). Calcium to phosphorus ratio, essential elements and vitamin D content of infant foods in the UK: Possible implications for bone health. Maternal and Child Nutrition, 13, e12368.
  • [25] Mumyapan, M. (2021). The use of pumpkin flour as a dietary fiber source in bologna type sausage production. Nevşehir Hacı Bektaş Veli University, Ensitute of Science, M.Sc. Thesis, 2021, Nevşehir, Türkiye. In Turkish.
  • [26] Wessells, K.R., Brown, K.H. (2012). Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. Plos One, 7, 1–11.
  • [27] Kubachka, K.M., Hanley, T., Mantha, M., Wilson, R.A., Falconer, T.M., Kassa, Z., Oliveira, A., Landero, J., Caruso, J. (2017). Evaluation of selenium in dietary supplements using elemental speciation. Food Chemistry, 218, 313–320.
  • [28] Aziah, A.N., Komathi, C.A. (2009). Physicochemical and functional properties of peeled and unpeeled pumpkin flour. Journal of Food Science, 74, 328–333.
  • [29] Champion, D., Le Meste, M., Simatos, D. (2000). Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range. Trends in Food Science and Technology, 11, 41-55.
  • [30] López-Vargas, J.H., Fernández-López, J., Pérez-Álvarez, J.A., Viuda-Martos, M. (2013). Chemical, physico-chemical, technological, antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Food Research International, 51, 756–763.
  • [31] Cui, J., Lian, Y., Zhao, C., Du, H., Han, Y., Gao, W., Xiao, H., Zheng, J. (2019). Dietary fibers from fruits and vegetables and their health benefits via modulation of gut microbiota. Comprehensive Reviews in Food Science and Food Safety, 18, 1514-1532.
  • [32] Viuda-Martos, M., Ruiz-Navajas, Y., Martin-Sánchez, A., Sánchez-Zapata, E., Fernández-López, J., Sendra, E., Sayas-Barberá, E., Navarro, C., Pérez-Álvarez, J.A. (2012). Chemical, physico-chemical and functional properties of pomegranate (Punica granatum L.) bagasses powder co-product. Journal of Food Engineering, 110, 220–224.
  • [33] Martínez, R., Torres, P., Meneses, M.A., Figueroa, J.G., Pérez-Álvarez, J.A., Viuda-Martos, M. (2012). Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chemistry, 135, 1520–1526.
  • [34] Fernández‐López, J., Sendra‐Nasdal, E., Navarro, C., Sayas, E., Viuda‐Martos, M., Alvarez, J.A.P. (2009). Storage stability of a high dietary fibre powder from orange by-products. International Journal of Food Science and Technology, 44, 748–756.
  • [35] Martínez-Las Heras, R., Landines, E.F. Heredia, A., Castelló, M.L., Andrés, A. (2017). Influence of drying process and particle size of persimmon fibre on its physicochemical, antioxidant, hydration and emulsifying properties. Journal of Food Science and Technology, 54, 2902–2912.
  • [36] Huber, E., Francio, D.L., Biasi, V., Mezzomo, N., Ferreira, S.R.S. (2016). Characterization of vegetable fiber and its use in chicken burger formulation. Journal of Food Science and Technology, 53, 3043–3052.
  • [37] Lin, M., Ryu, G.H. (2014). Effects of thermomechanical extrusion and particle size reduction on bioconversion rate of corn fiber for ethanol production. Cereal Chemistry, 91, 366–373.
There are 37 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Papers
Authors

Nesimi Aktaş 0000-0002-4741-9867

Kamil Emre Gerçekaslan 0000-0002-9804-9982

Publication Date March 29, 2024
Submission Date October 14, 2023
Acceptance Date March 17, 2024
Published in Issue Year 2024 Volume: 22 Issue: 1

Cite

APA Aktaş, N., & Gerçekaslan, K. E. (2024). Pumpkin (Cucurbita pepo L.) Pulp Flour as a Source of Dietary Fiber: Chemical, Physicochemical and Technological Properties. Akademik Gıda, 22(1), 14-22. https://doi.org/10.24323/akademik-gida.1460957
AMA Aktaş N, Gerçekaslan KE. Pumpkin (Cucurbita pepo L.) Pulp Flour as a Source of Dietary Fiber: Chemical, Physicochemical and Technological Properties. Akademik Gıda. March 2024;22(1):14-22. doi:10.24323/akademik-gida.1460957
Chicago Aktaş, Nesimi, and Kamil Emre Gerçekaslan. “Pumpkin (Cucurbita Pepo L.) Pulp Flour As a Source of Dietary Fiber: Chemical, Physicochemical and Technological Properties”. Akademik Gıda 22, no. 1 (March 2024): 14-22. https://doi.org/10.24323/akademik-gida.1460957.
EndNote Aktaş N, Gerçekaslan KE (March 1, 2024) Pumpkin (Cucurbita pepo L.) Pulp Flour as a Source of Dietary Fiber: Chemical, Physicochemical and Technological Properties. Akademik Gıda 22 1 14–22.
IEEE N. Aktaş and K. E. Gerçekaslan, “Pumpkin (Cucurbita pepo L.) Pulp Flour as a Source of Dietary Fiber: Chemical, Physicochemical and Technological Properties”, Akademik Gıda, vol. 22, no. 1, pp. 14–22, 2024, doi: 10.24323/akademik-gida.1460957.
ISNAD Aktaş, Nesimi - Gerçekaslan, Kamil Emre. “Pumpkin (Cucurbita Pepo L.) Pulp Flour As a Source of Dietary Fiber: Chemical, Physicochemical and Technological Properties”. Akademik Gıda 22/1 (March 2024), 14-22. https://doi.org/10.24323/akademik-gida.1460957.
JAMA Aktaş N, Gerçekaslan KE. Pumpkin (Cucurbita pepo L.) Pulp Flour as a Source of Dietary Fiber: Chemical, Physicochemical and Technological Properties. Akademik Gıda. 2024;22:14–22.
MLA Aktaş, Nesimi and Kamil Emre Gerçekaslan. “Pumpkin (Cucurbita Pepo L.) Pulp Flour As a Source of Dietary Fiber: Chemical, Physicochemical and Technological Properties”. Akademik Gıda, vol. 22, no. 1, 2024, pp. 14-22, doi:10.24323/akademik-gida.1460957.
Vancouver Aktaş N, Gerçekaslan KE. Pumpkin (Cucurbita pepo L.) Pulp Flour as a Source of Dietary Fiber: Chemical, Physicochemical and Technological Properties. Akademik Gıda. 2024;22(1):14-22.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).