Research Article
BibTex RIS Cite

Effect of Ultrasound Pretreatment on the Retention of Loquat Phenolics and Antioxidants during Tray and Freeze-Drying

Year 2024, Volume: 22 Issue: 2, 78 - 85, 04.09.2024
https://doi.org/10.24323/akademik-gida.1543478

Abstract

In this study, the effect of ultrasound (US) pretreatment (600W for 30 min) prior to tray drying (TD) (461°C at 1.10 m/s) and freeze drying (FD) (-58C at 0.001 mbar) on the quality characteristics of loquat cubes was investigated. US pretreatment in TD demonstrated a significant decrease in drying time (19.67%) and an increase in drying rates (22.23%, p<0.05). With US pretreatment, the effective moisture diffusivity increased from 7.83x10-9 to 8.92x10-9 m2/s in TD. The highest rehydration capacity (4.47±0.23 g/g) was found in FD samples with US. In comparison to TD and control samples, FD samples had higher phenolic contents. US pretreatment significantly reduced phenolic contents from 1551.19±142.12 to 1197.03±80.51 mg GAE/100g and from 770.12±125.93 to 374.78±71.95 mg GAE/100g for FD and TD, respectively (p<0.05). The antioxidant capacity of loquat cubes significantly decreased with TD compared to FD (p<0.05). Results indicated that FD is a viable option for drying loquat cubes with a low moisture content, high rehydration capacity, and enhanced phenolic content and antioxidant activity.

References

  • [1] Cao, S., Zheng, Y., Wang, K., Rui, H., Tang, S. (2009). Effect of 1-methylcyclopropene treatment on chilling injury, fatty acid and cell wall polysaccharide composition in loquat fruit. Journal of Agricultural and Food Chemistry, 57, 8439-8443.
  • [2] Ercişli, S., Gözlekçi, S., Şengül, M., Hegedus, A., Tepe, S. (2012). Some physicochemical characteristics, bioactive content and antioxidant capacity of loquat (Eriobotrya japonica (Thunb.) Lindl.) fruits from Turkey. Scientia Horticulturae, 148, 185-189.
  • [3] Pareek, S., Benkeblia, N., Janic, J., Cao, S., Yahia, E. (2014). Postharvest physiology and technology of loquat (Eriobotrya japonica Lindl.) fruit. Journal of the Science of Food and Agriculture, 94, 1495–1504.
  • [4] Xu, H., Chen, H. (2011). Commercial quality major bioactive compound content and antioxidant capacity of 12 cultivars of loquat (Eribotrya japonica Lindl.) fruits. Journal of the Science of Food and Agriculture, 91, 1057-1063.
  • [5] Ding, C.K., Chachin, K., Ueda, Y., Imahori, Y., Wang, C.Y. (2001). Metabolism of phenolic compounds during loquat fruit development. Journal of Agricultural and Food Chemistry, 49(6), 2883–2888.
  • [6] Wojdyło, A., Figiel, A., Lech, K., Nowicka, P., Oszmiański, J. (2014). Effect of convective and vacuum-microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food and Bioprocess Technology, 7(3), 829-841.
  • [7] Feng, Y., Ping Tan, C., Zhou, C., Yagoub, A.E.G.A., Xu, B., Sun, Y., Ma, H., Xu, X., Yu, X. (2020). Effect of freeze- thaw cycles pretreatment on the vacuum freeze- drying process and physicochemical properties of the dried garlic slices. Food Chemistry, 324, 126883.
  • [8] Keskin Çavdar, H., Adal, E. (2023). Effect of freeze-drying and oven-drying on volatiles, bioactive and structural properties of hawthorn (Crataegus tanacetifolia) fruit. Akademik Gıda, 21(2), 202-210.
  • [9] Mishra, A., Upadhyay, A., Jaiswal, P., Sharma, N. (2021). Effect of different drying method on the chemical and microstructural properties of Loquat slices. Journal of Food Processing and Preservation, 45, e15105.
  • [10] López-Lluch, D.B., Cano-Lamadrid, M., Hernández, F., Zimmer, A., Lech, K., Figiel, A., Carbonell-Barrachina, A.A., Wojdyło, A. (2020). Hydroxycinnamic acids and carotenoids of dried loquat fruit cv. ‘Algar’ affected by freeze-, convective-, vacuum-microwave- and combined-drying methods. Molecules, 25(16), 3643.
  • [11] Rodríguez, O., Santacatalina, J.V., Simal, S., Garcia-Perez, J.V., Femenia, A., Rossello, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21-29.
  • [12] Rodríguez, Ó., Gomes, W., Rodrigues, S., Fernandes, F.A.N. (2017). Effect of acoustically assisted treatments on vitamins, antioxidant activity, organic acids and drying kinetics of pineapple. Ultrasonics Sonochemistry, 35, 92-102.
  • [13] Cao, X., Islam, M.N., Zhong, S., Pan, X., Song, M., Shan,g F., Nie, H., Xu, W., Duan, Z. (2020). Drying kinetics, antioxidants, and physicochemical properties of litchi fruits by ultrasound‐assisted hot air‐drying. Journal of Food Biochemistry, 44(1), e13073.
  • [14] Zhang, Z., Liu, Z., Liu, C., Li, D., Jiang, N., Liu, C. (2016). Effects of ultrasound pretreatment on drying kinetics and quality parameters of button mushroom slices. Drying Technology, 34(15), 1791-1800.
  • [15] Sledz, M., Wiktor, A., Nowacka, M., Witrowa-Rajchert, D. (2017). Drying kinetics, microstructure and antioxidant properties of basil treated by ultrasound. Journal of Food Process Engineering, 40(1), e12271.
  • [16] AOAC (1995). Official methods of analysis. Washington, DC: Association of Official Analytical Chemists.
  • [17] Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
  • [18] Molyneux, P. (2004). The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211-219.
  • [19] Apak, R., Güçlü, K., Özyürek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981.
  • [20] Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560.
  • [21] Jambrak, A.R., Mason, T.J., Paniwnyk, L., Lelas, V. (2007). Accelerated drying of button mushrooms, brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81(1), 88-97.
  • [22] Magalhães, M.L., Cartaxo, S.J.M., Gallão, M.I., García-Pérez, J.V., Cárcel, J.A., Rodrigues, S., Fernandes, F.A.N. (2017). Drying intensification combining ultrasound pre-treatment and ultrasound-assisted air drying. Journal of Food Engineering, 215, 72-77.
  • [23] Knorr, D., Zenker, M., Heinz, V., Lee, D. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science and Technology, 15(5), 261-266.
  • [24] Rani, P., Tripathy, P.P. (2019). Effect of ultrasound and chemical pretreatment on drying characteristics and quality attributes of hot air-dried pineapple slices. Journal of Food Science and Technology, 56(11), 4911-4924.
  • [25] Oladejo, A.O., Ekpene, M.A.M., Onwude, D.I., Assian, U.E., Nkem, O.M. (2021). Effects of ultrasound pretreatments on the drying kinetics of yellow cassava during convective hot air drying. Journal of Food Processing and Preservation, 45(3), e15251.
  • [26] Jahanbakhshi, A., Yeganeh, R., Momeny, M. (2020). Influence of ultrasound pre‐treatment and temperature on the quality and thermodynamic properties in the drying process of nectarine slices in a hot air dryer. Journal of Food Processing and Preservation, 44(10), e14818.
  • [27] Cárcel, J.A., García-Pérez, J.V., Mulet, A., Riera, E. (2007). Influence of high-intensity ultrasound on drying kinetics of persimmon. Drying Technology, 25(1), 185–193.
  • [28] Gamboa-Santos, J., Montilla, A., Cárcel, J.A., Villamiel, M., Garcia-Perez, J.V. (2014) Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 128, 132-139.
  • [29] Bozkir, H., Rayman Ergün, A., Serdar, E., Metin, G., Baysal, T. (2019). Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrasonics Sonochemistry, 54, 135-141.
  • [30] Çetin, N., Sağlam, C. (2023). Effects of ultrasound pretreatment assisted drying methods on drying characteristics, physical and bioactive properties of windfall apples. Journal of the Science of Food and Agriculture, 103(2), 534–547.
  • [31] Mothibe, K.J., Zhang, M., Mujumdar, A.S., Wang, Y.C., Cheng, X. (2014). Effects of ultrasound and microwave pretreatments of apple before spouted bed drying on rate of dehydration and physical properties. Drying Technology, 32(15), 1848-1856.
  • [32] Akdaş, S., Başlar, M. (2015). Dehydration and degradation kinetics of bioactive compounds for mandarin slices under vacuum and oven drying conditions. Journal of Food Processing and Preservation, 39(6), 1098–1107.
  • [33] Amami, E., Khezami, W., Mezrigui, S., Badwaik, L.S., Bejar, A.K., Perez, C.T., Kechaou, N. (2017). Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrasonics Sonochemistry, 36, 286-300.
  • [34] Yildiz, G., Izli, G. (2019). The effect of ultrasound pretreatment on quality attributes of freeze‐dried quince slices: Physical properties and bioactive compounds. Journal of Food Process Engineering, 42(5), e13223.
  • [35] Romero, J.C.A., Yépez, V.B.D. (2015). Ultrasound as pretreatment to convective drying of Andean blackberry (Rubus glaucus Benth). Ultrasonics Sonochemistry, 22, 205–210.
  • [36] Šic Žlabur, J., Colnar, D., Voća, S., Lorenzo, J.M., Munekata, P.E.S., Barba, F.J., Dobričevic, N., Galić, A., Dujmić, F., Pliestić, S., Brnčić, M. (2019). Effect of ultrasound pre-treatment and drying method on specialized metabolites of honeyberry fruits (Lonicera caerulea var. kamtschatica). Ultrasonics Sonochemistry, 56, 372-377.

Ultrases Önişleminin Malta Eriğinin Tepsili ve Dondurarak Kurutulması Sırasında Fenolik ve Antioksidanların Muhafazasına Etkisi

Year 2024, Volume: 22 Issue: 2, 78 - 85, 04.09.2024
https://doi.org/10.24323/akademik-gida.1543478

Abstract

Tepsili kurutma (TK) (461°C, 1.10 m/s) ve dondurarak kurutma (DK) (-58C, 0.001mbar) yöntemleri öncesi uygulanan ultrases (US) (600W, 30 min) tekniğinin kurutulmuş yenidünya (Malta eriği) küplerinin kalitesine etkisi araştırılmıştır. Ultrases önişlem uygulaması ile T kurutma zamanında anlamlı düşme (19.67%) ve kurutma hızında anlamlı yükselme (22.23%, p<0.05) belirlenmiştir. Ultrases uygulaması ile TK yönteminde etkin difüzyon katsayısı 7.83x10-9’dan 8.92x10-9 m2/s’a yükselmiştir. En yüksek rehidrasyon kapasitesi 4.47±0.23 g/g ile US uygulaması sonrası DK yöntemiyle kurutulan örneklerde gözlemlenmiştir. DK ile kurutulan örneklerdeki fenolik madde miktarı TK ile kurutulan örneklere oranla yüksek olduğu belirlenmiştir. Ultrases önişlemi fenolik madde miktarını DK ile kurutulan örneklerde 1551.19±142.12’den 1197.03±80.51’e mg GAE/100g, TK ile kurutulan örneklerde de 770.12±125.93’ten 374.78±71.95’e mg GAE/100g azaltmıştır (p<0.05). Dondurarak kurutma işlemi ile karşılaştırıldığında, TK işlemi uygulanan yenidünya küplerinin antioksidan kapasiteside anlamlı düşüş gözlemlenmiştir (p<0.05). Yapılan çalışmanın sonucuna göre düşük nem oranı, yüksek rehidrasyon kapasitesi, yüksek fenolik madde miktarı ve antioksidan kapasitesi ile yenidünya küplerine DK tekniğinin uygulanabilir bir opsiyon olduğu belirlenmiştir.

References

  • [1] Cao, S., Zheng, Y., Wang, K., Rui, H., Tang, S. (2009). Effect of 1-methylcyclopropene treatment on chilling injury, fatty acid and cell wall polysaccharide composition in loquat fruit. Journal of Agricultural and Food Chemistry, 57, 8439-8443.
  • [2] Ercişli, S., Gözlekçi, S., Şengül, M., Hegedus, A., Tepe, S. (2012). Some physicochemical characteristics, bioactive content and antioxidant capacity of loquat (Eriobotrya japonica (Thunb.) Lindl.) fruits from Turkey. Scientia Horticulturae, 148, 185-189.
  • [3] Pareek, S., Benkeblia, N., Janic, J., Cao, S., Yahia, E. (2014). Postharvest physiology and technology of loquat (Eriobotrya japonica Lindl.) fruit. Journal of the Science of Food and Agriculture, 94, 1495–1504.
  • [4] Xu, H., Chen, H. (2011). Commercial quality major bioactive compound content and antioxidant capacity of 12 cultivars of loquat (Eribotrya japonica Lindl.) fruits. Journal of the Science of Food and Agriculture, 91, 1057-1063.
  • [5] Ding, C.K., Chachin, K., Ueda, Y., Imahori, Y., Wang, C.Y. (2001). Metabolism of phenolic compounds during loquat fruit development. Journal of Agricultural and Food Chemistry, 49(6), 2883–2888.
  • [6] Wojdyło, A., Figiel, A., Lech, K., Nowicka, P., Oszmiański, J. (2014). Effect of convective and vacuum-microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food and Bioprocess Technology, 7(3), 829-841.
  • [7] Feng, Y., Ping Tan, C., Zhou, C., Yagoub, A.E.G.A., Xu, B., Sun, Y., Ma, H., Xu, X., Yu, X. (2020). Effect of freeze- thaw cycles pretreatment on the vacuum freeze- drying process and physicochemical properties of the dried garlic slices. Food Chemistry, 324, 126883.
  • [8] Keskin Çavdar, H., Adal, E. (2023). Effect of freeze-drying and oven-drying on volatiles, bioactive and structural properties of hawthorn (Crataegus tanacetifolia) fruit. Akademik Gıda, 21(2), 202-210.
  • [9] Mishra, A., Upadhyay, A., Jaiswal, P., Sharma, N. (2021). Effect of different drying method on the chemical and microstructural properties of Loquat slices. Journal of Food Processing and Preservation, 45, e15105.
  • [10] López-Lluch, D.B., Cano-Lamadrid, M., Hernández, F., Zimmer, A., Lech, K., Figiel, A., Carbonell-Barrachina, A.A., Wojdyło, A. (2020). Hydroxycinnamic acids and carotenoids of dried loquat fruit cv. ‘Algar’ affected by freeze-, convective-, vacuum-microwave- and combined-drying methods. Molecules, 25(16), 3643.
  • [11] Rodríguez, O., Santacatalina, J.V., Simal, S., Garcia-Perez, J.V., Femenia, A., Rossello, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21-29.
  • [12] Rodríguez, Ó., Gomes, W., Rodrigues, S., Fernandes, F.A.N. (2017). Effect of acoustically assisted treatments on vitamins, antioxidant activity, organic acids and drying kinetics of pineapple. Ultrasonics Sonochemistry, 35, 92-102.
  • [13] Cao, X., Islam, M.N., Zhong, S., Pan, X., Song, M., Shan,g F., Nie, H., Xu, W., Duan, Z. (2020). Drying kinetics, antioxidants, and physicochemical properties of litchi fruits by ultrasound‐assisted hot air‐drying. Journal of Food Biochemistry, 44(1), e13073.
  • [14] Zhang, Z., Liu, Z., Liu, C., Li, D., Jiang, N., Liu, C. (2016). Effects of ultrasound pretreatment on drying kinetics and quality parameters of button mushroom slices. Drying Technology, 34(15), 1791-1800.
  • [15] Sledz, M., Wiktor, A., Nowacka, M., Witrowa-Rajchert, D. (2017). Drying kinetics, microstructure and antioxidant properties of basil treated by ultrasound. Journal of Food Process Engineering, 40(1), e12271.
  • [16] AOAC (1995). Official methods of analysis. Washington, DC: Association of Official Analytical Chemists.
  • [17] Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
  • [18] Molyneux, P. (2004). The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211-219.
  • [19] Apak, R., Güçlü, K., Özyürek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981.
  • [20] Chemat, F., Rombaut, N., Sicaire, A.G., Meullemiestre, A., Fabiano-Tixier, A.S., Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560.
  • [21] Jambrak, A.R., Mason, T.J., Paniwnyk, L., Lelas, V. (2007). Accelerated drying of button mushrooms, brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81(1), 88-97.
  • [22] Magalhães, M.L., Cartaxo, S.J.M., Gallão, M.I., García-Pérez, J.V., Cárcel, J.A., Rodrigues, S., Fernandes, F.A.N. (2017). Drying intensification combining ultrasound pre-treatment and ultrasound-assisted air drying. Journal of Food Engineering, 215, 72-77.
  • [23] Knorr, D., Zenker, M., Heinz, V., Lee, D. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science and Technology, 15(5), 261-266.
  • [24] Rani, P., Tripathy, P.P. (2019). Effect of ultrasound and chemical pretreatment on drying characteristics and quality attributes of hot air-dried pineapple slices. Journal of Food Science and Technology, 56(11), 4911-4924.
  • [25] Oladejo, A.O., Ekpene, M.A.M., Onwude, D.I., Assian, U.E., Nkem, O.M. (2021). Effects of ultrasound pretreatments on the drying kinetics of yellow cassava during convective hot air drying. Journal of Food Processing and Preservation, 45(3), e15251.
  • [26] Jahanbakhshi, A., Yeganeh, R., Momeny, M. (2020). Influence of ultrasound pre‐treatment and temperature on the quality and thermodynamic properties in the drying process of nectarine slices in a hot air dryer. Journal of Food Processing and Preservation, 44(10), e14818.
  • [27] Cárcel, J.A., García-Pérez, J.V., Mulet, A., Riera, E. (2007). Influence of high-intensity ultrasound on drying kinetics of persimmon. Drying Technology, 25(1), 185–193.
  • [28] Gamboa-Santos, J., Montilla, A., Cárcel, J.A., Villamiel, M., Garcia-Perez, J.V. (2014) Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 128, 132-139.
  • [29] Bozkir, H., Rayman Ergün, A., Serdar, E., Metin, G., Baysal, T. (2019). Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrasonics Sonochemistry, 54, 135-141.
  • [30] Çetin, N., Sağlam, C. (2023). Effects of ultrasound pretreatment assisted drying methods on drying characteristics, physical and bioactive properties of windfall apples. Journal of the Science of Food and Agriculture, 103(2), 534–547.
  • [31] Mothibe, K.J., Zhang, M., Mujumdar, A.S., Wang, Y.C., Cheng, X. (2014). Effects of ultrasound and microwave pretreatments of apple before spouted bed drying on rate of dehydration and physical properties. Drying Technology, 32(15), 1848-1856.
  • [32] Akdaş, S., Başlar, M. (2015). Dehydration and degradation kinetics of bioactive compounds for mandarin slices under vacuum and oven drying conditions. Journal of Food Processing and Preservation, 39(6), 1098–1107.
  • [33] Amami, E., Khezami, W., Mezrigui, S., Badwaik, L.S., Bejar, A.K., Perez, C.T., Kechaou, N. (2017). Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrasonics Sonochemistry, 36, 286-300.
  • [34] Yildiz, G., Izli, G. (2019). The effect of ultrasound pretreatment on quality attributes of freeze‐dried quince slices: Physical properties and bioactive compounds. Journal of Food Process Engineering, 42(5), e13223.
  • [35] Romero, J.C.A., Yépez, V.B.D. (2015). Ultrasound as pretreatment to convective drying of Andean blackberry (Rubus glaucus Benth). Ultrasonics Sonochemistry, 22, 205–210.
  • [36] Šic Žlabur, J., Colnar, D., Voća, S., Lorenzo, J.M., Munekata, P.E.S., Barba, F.J., Dobričevic, N., Galić, A., Dujmić, F., Pliestić, S., Brnčić, M. (2019). Effect of ultrasound pre-treatment and drying method on specialized metabolites of honeyberry fruits (Lonicera caerulea var. kamtschatica). Ultrasonics Sonochemistry, 56, 372-377.
There are 36 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Papers
Authors

Manolya Eser Öner 0000-0003-4237-437X

Gülay Özkan 0000-0002-6375-1608

İlayda Doğan This is me 0009-0001-1358-0628

Tuba Esatbeyoglu 0000-0003-2413-6925

Esra Çapanoğlu Güven 0000-0003-0335-9433

Publication Date September 4, 2024
Submission Date October 28, 2023
Acceptance Date July 21, 2024
Published in Issue Year 2024 Volume: 22 Issue: 2

Cite

APA Öner, M. E., Özkan, G., Doğan, İ., Esatbeyoglu, T., et al. (2024). Effect of Ultrasound Pretreatment on the Retention of Loquat Phenolics and Antioxidants during Tray and Freeze-Drying. Akademik Gıda, 22(2), 78-85. https://doi.org/10.24323/akademik-gida.1543478
AMA Öner ME, Özkan G, Doğan İ, Esatbeyoglu T, Çapanoğlu Güven E. Effect of Ultrasound Pretreatment on the Retention of Loquat Phenolics and Antioxidants during Tray and Freeze-Drying. Akademik Gıda. September 2024;22(2):78-85. doi:10.24323/akademik-gida.1543478
Chicago Öner, Manolya Eser, Gülay Özkan, İlayda Doğan, Tuba Esatbeyoglu, and Esra Çapanoğlu Güven. “Effect of Ultrasound Pretreatment on the Retention of Loquat Phenolics and Antioxidants During Tray and Freeze-Drying”. Akademik Gıda 22, no. 2 (September 2024): 78-85. https://doi.org/10.24323/akademik-gida.1543478.
EndNote Öner ME, Özkan G, Doğan İ, Esatbeyoglu T, Çapanoğlu Güven E (September 1, 2024) Effect of Ultrasound Pretreatment on the Retention of Loquat Phenolics and Antioxidants during Tray and Freeze-Drying. Akademik Gıda 22 2 78–85.
IEEE M. E. Öner, G. Özkan, İ. Doğan, T. Esatbeyoglu, and E. Çapanoğlu Güven, “Effect of Ultrasound Pretreatment on the Retention of Loquat Phenolics and Antioxidants during Tray and Freeze-Drying”, Akademik Gıda, vol. 22, no. 2, pp. 78–85, 2024, doi: 10.24323/akademik-gida.1543478.
ISNAD Öner, Manolya Eser et al. “Effect of Ultrasound Pretreatment on the Retention of Loquat Phenolics and Antioxidants During Tray and Freeze-Drying”. Akademik Gıda 22/2 (September 2024), 78-85. https://doi.org/10.24323/akademik-gida.1543478.
JAMA Öner ME, Özkan G, Doğan İ, Esatbeyoglu T, Çapanoğlu Güven E. Effect of Ultrasound Pretreatment on the Retention of Loquat Phenolics and Antioxidants during Tray and Freeze-Drying. Akademik Gıda. 2024;22:78–85.
MLA Öner, Manolya Eser et al. “Effect of Ultrasound Pretreatment on the Retention of Loquat Phenolics and Antioxidants During Tray and Freeze-Drying”. Akademik Gıda, vol. 22, no. 2, 2024, pp. 78-85, doi:10.24323/akademik-gida.1543478.
Vancouver Öner ME, Özkan G, Doğan İ, Esatbeyoglu T, Çapanoğlu Güven E. Effect of Ultrasound Pretreatment on the Retention of Loquat Phenolics and Antioxidants during Tray and Freeze-Drying. Akademik Gıda. 2024;22(2):78-85.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).