Research Article
BibTex RIS Cite

Alfa Kenmotsu Pseudo Metrik Manifoldlar Üzerine

Year 2020, Volume: 20 Issue: 6, 975 - 982, 31.12.2020
https://doi.org/10.35414/akufemubid.803483

Abstract

Bu makalenin asıl amacı alfa Kenmotsu psödo metrik manifoldlar üzerinde bazı eğrilik özelliklerini incelemektir. Özellikle bu tür manifoldlar üzerinde lokal simetri, global ϕ-simetri ve lokal ϕ-simetri gibi tensör koşulları bazı ek şartlar altında göz önüne alınmıştır. Ayrıca, η-Einstein ve Einstein manifoldlar için gerek ve yeter koşullar çalışılmıştır. Bundan başka, ξ-kesit ve ϕ-kesit eğrilikleri ile ilgili bazı sonuçlar alfa Kenmotsu psödo metrik manifoldlar üzerinde verilmiştir. Son olarak, makale alfa Kenmotsu psödo metrik manifoldlar için açıklayıcı bir örnekle sonlandırılmıştır.

Supporting Institution

Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

17.FEN.BİL.11

Thanks

Bu çalışma, Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 17.FEN.BİL.11 numaralı proje ile desteklenmiştir. Ayrıca, yapıcı yorumları ve katkılarından dolayı saygıdeğer hakemlere teşekkür ederiz.

References

  • Alegre, P., 2011. Semi invariant submanifolds of Lorentzian Sasakian manifolds. Demonstratio Mathematica, 44, 391–406.
  • Calvaruso, G., 2011. Contact Lorentzian manifolds. Differential Geometry and its Applications, 29, 541–551.
  • Calvaruso, G. and Perrone, D., 2010. Contact pseudo-metric manifolds. Differential Geometry and its Applications, 28, 615–634.
  • Dileo, G. and Pastore, A. M., 2009. Almost Kenmotsu manifolds with a condition of η-parallelism. Differential Geometry and its Applications, 27, 671–679.
  • Duggal, K.L., 1990. Space time manifolds and contact structures. Internat. J. Math. & Math. Sci, 13, 545–554.
  • Kenmotsu, K., 1972. A class of contact Riemannian manifold, Tôhoku Math. Journal, 24 , 93–103.
  • O’Neil, B., 1983, Semi-Riemannian geometry with applications to relativity, Academic Press, New York.
  • Öztürk, H., 2016. On Almost α-Kenmotsu Manifolds with Some Tensor Fields, AKU J. Sci. Eng., 16, 256–264.
  • Öztürk, H., Aktan N. and Murathan C., 2010. On α-Kenmotsu manifolds satisfying certain conditions. Applied Sciences, 12, 115–126.
  • Perrone, D., 2014. Contact pseudo-metric manifolds of constant curvature and CR geometry. Results in Mathematics, 66, 213–225.
  • Takahashi, T., 1969. Sasakian manifold with pseudo-Riemannian manifolds. Tôhoku Math. Journal, 21, 271–290.
  • Yano, K. and Kon, M., 1984, Structures on manifolds, Series in Pure Mathematics, 3. World Scientific Publishing Co., Singapore.
  • Wang, Y. and Liu, X., 2016. Almost Kenmotsu pseudo-metric manifolds. Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica, 62, 241–256.

On Alpha Kenmotsu Pseudo Metric Manifolds

Year 2020, Volume: 20 Issue: 6, 975 - 982, 31.12.2020
https://doi.org/10.35414/akufemubid.803483

Abstract

The aim of this paper is to investigate some curvature properties on alpha Kenmotsu pseudo metric manifolds. In particular, the tensor conditions such as locally symmetry, globally ϕ-symmetry and locally ϕ-symmetry under some additional conditions on such manifolds are considered. Also, the necessary and sufficient conditions for η-Einstein and Einstein manifolds are studied. Furthermore, some results are related to ξ-sectional and ϕ-sectional curvatures on alpha Kenmotsu pseudo metric manifolds are given. Finally, the paper is concluded with an illustrative example for alpha Kenmotsu pseudo metric manifolds.

Project Number

17.FEN.BİL.11

References

  • Alegre, P., 2011. Semi invariant submanifolds of Lorentzian Sasakian manifolds. Demonstratio Mathematica, 44, 391–406.
  • Calvaruso, G., 2011. Contact Lorentzian manifolds. Differential Geometry and its Applications, 29, 541–551.
  • Calvaruso, G. and Perrone, D., 2010. Contact pseudo-metric manifolds. Differential Geometry and its Applications, 28, 615–634.
  • Dileo, G. and Pastore, A. M., 2009. Almost Kenmotsu manifolds with a condition of η-parallelism. Differential Geometry and its Applications, 27, 671–679.
  • Duggal, K.L., 1990. Space time manifolds and contact structures. Internat. J. Math. & Math. Sci, 13, 545–554.
  • Kenmotsu, K., 1972. A class of contact Riemannian manifold, Tôhoku Math. Journal, 24 , 93–103.
  • O’Neil, B., 1983, Semi-Riemannian geometry with applications to relativity, Academic Press, New York.
  • Öztürk, H., 2016. On Almost α-Kenmotsu Manifolds with Some Tensor Fields, AKU J. Sci. Eng., 16, 256–264.
  • Öztürk, H., Aktan N. and Murathan C., 2010. On α-Kenmotsu manifolds satisfying certain conditions. Applied Sciences, 12, 115–126.
  • Perrone, D., 2014. Contact pseudo-metric manifolds of constant curvature and CR geometry. Results in Mathematics, 66, 213–225.
  • Takahashi, T., 1969. Sasakian manifold with pseudo-Riemannian manifolds. Tôhoku Math. Journal, 21, 271–290.
  • Yano, K. and Kon, M., 1984, Structures on manifolds, Series in Pure Mathematics, 3. World Scientific Publishing Co., Singapore.
  • Wang, Y. and Liu, X., 2016. Almost Kenmotsu pseudo-metric manifolds. Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica, 62, 241–256.
There are 13 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sermin Öztürk This is me 0000-0002-8535-0792

Hakan Öztürk

Project Number 17.FEN.BİL.11
Publication Date December 31, 2020
Submission Date October 1, 2020
Published in Issue Year 2020 Volume: 20 Issue: 6

Cite

APA Öztürk, S., & Öztürk, H. (2020). Alfa Kenmotsu Pseudo Metrik Manifoldlar Üzerine. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(6), 975-982. https://doi.org/10.35414/akufemubid.803483
AMA Öztürk S, Öztürk H. Alfa Kenmotsu Pseudo Metrik Manifoldlar Üzerine. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. December 2020;20(6):975-982. doi:10.35414/akufemubid.803483
Chicago Öztürk, Sermin, and Hakan Öztürk. “Alfa Kenmotsu Pseudo Metrik Manifoldlar Üzerine”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20, no. 6 (December 2020): 975-82. https://doi.org/10.35414/akufemubid.803483.
EndNote Öztürk S, Öztürk H (December 1, 2020) Alfa Kenmotsu Pseudo Metrik Manifoldlar Üzerine. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20 6 975–982.
IEEE S. Öztürk and H. Öztürk, “Alfa Kenmotsu Pseudo Metrik Manifoldlar Üzerine”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 6, pp. 975–982, 2020, doi: 10.35414/akufemubid.803483.
ISNAD Öztürk, Sermin - Öztürk, Hakan. “Alfa Kenmotsu Pseudo Metrik Manifoldlar Üzerine”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 20/6 (December 2020), 975-982. https://doi.org/10.35414/akufemubid.803483.
JAMA Öztürk S, Öztürk H. Alfa Kenmotsu Pseudo Metrik Manifoldlar Üzerine. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20:975–982.
MLA Öztürk, Sermin and Hakan Öztürk. “Alfa Kenmotsu Pseudo Metrik Manifoldlar Üzerine”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 20, no. 6, 2020, pp. 975-82, doi:10.35414/akufemubid.803483.
Vancouver Öztürk S, Öztürk H. Alfa Kenmotsu Pseudo Metrik Manifoldlar Üzerine. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2020;20(6):975-82.