BibTex RIS Cite

-

Year 2014, Volume: 20 Issue: 3, 215 - 229, 14.08.2014
https://doi.org/10.15832/tbd.98757

Abstract

Soil salinity is one of the most significant abiotic stress factors that adversely affect yield and quality. Silicon (Si) is known as a nutrient element reducing the deleterious effects of these stresses in plants. The objective of this study was to investigate the effect of salt x Si interaction on rice yield, the effect of salinity on available Si content of soils and the reducing effect of silicon on salt induced-stresses. For this aim, 5 different soil samples were taken from rice grown soils around Samsun. To obtain the different salt levels in soils, a salt mixture of NaSO :NaCl:CaCl:MgSO at the 9:5:5:1 ratio were added into the soil 1, 2 , 3, 4, and 5 to reach 10.27, 3.55, 10.98, 5.75 and 7.22 dS mEC values, respectively. A greenhouse experiment was conducted in factorial experimental design (2 x 5) with three replicates in each soil with growing rice plant. In each salt level (non-saline and saline) 0, 50, 100, 200, and 400 mg Si kg as silicic acid (HSiO ) were given into the soils. Also, NPK fertilizations according to the soil analyses were made to obtain the same levels of these elements in each soil. Increases in the mean grain yield upon silicon fertilization ranged between 55.5% for the soil having 3.55 dS m EC and 2.31% for the soil having 10.98 dS m EC. The salt x Si interaction was significant in 4 soils and the optimum Si rate for each soil was dependent on salinity levels of the soils. Increments in the available Si concentration of soils and the rice grain yield by silicon fertilization decreased with increasing EC values of soils. While silicon decreased Na concentration of rice grain; K concentration increased; Ca, Mg and P concentrations did not show any distinct tendency. Rice grain yield had a significant negative relation with Na content (R = - 0.664) while silicon fertilization increased the ratios of K/Na, Ca/Na, Mg/Na and P/Na. Consequently, it was determined that the optimum Si dose for rice grown in saline soils was 200 mg kg and silicon fertilization could be a practical way of reducing the deleterious effect of soil salinity and alkalinity in rice cultivation.

References

  • Abdullah Z, Khan M A & Flowers T Z (2001). Causes of sterility in seed set of rice under salinity stress. Journal of Agronomy and Crop Science 167 (1): 25-32
  • Abou-Baker N H, Abd-Eladl M & Mohsen M A (2011). Use of silicate and different cultivation practices in alleviating salt stress effect on bean plants. Australian Journal of Basic and Applied Sciences 5(9): 769-781
  • Acar O (1999). Kurağa dayanıklı bazı arpa (Hordeum ssp.) çeşitlerinde süperoksit dismutaz (SOD) aktivitelerinin araştırılması. Doktora tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü (Basılmamış), İzmir
  • Aktaş M (1994). Bitki Besleme ve Toprak Verimliliği. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ders Kitabı:1361, Ankara
  • Alexieva V, Ivanov S, Sergiev I & Karanov E (2003). Interaction between stresses. Bulgarian Journal of Plant Physiology, Special Issue, pp. 1-17
  • Ali A, Basra S M A, Hussain S, Iqbal J, Alias M A, Bukhsh H A & Sarwar M (2012). Salt stress alleviation in field crops through nutritional supplementation of silicon. Pakistan Journal of Nutrition 11(8): 637-655
  • Alparslan M, Güneş A & Taban S (1998). Tuz stresinde çeltik ve buğday çeşitlerinin kalsiyum, fosfor, demir, bakır, çinko ve mangan kapsamlarında değişmeler. Turkish Journal of Agriculture and Forestry 22: 227-233
  • Apse M P & Blumwald E (2002). Engineering salt tolerance in plants. Current Opinion in Biotechnology 13: 146-150
  • Ashraf M Y, Azmi A R, Khan A H & Ala S A (1994). Effect of water stress on total phenol, peroxidase activity and chlorophyll contents in wheat (Triticum aestivum L.). Acta Physiologiae Plantarum 16: 185-191
  • Ashraf M & Harris P J C (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science 166: 3-16
  • Ashraf M Y, Akhtar K, Hussain F & Iqbal J (2006). Screening of different accession of three potential grass species from Cholistan desert for salt tolerance. Pakistan Journal of Botany 38: 1589-1597
  • Bae E J, Lee K S, Huh M R & Lim C S (2012). Silicon significantly alleviates the growth inhibitory effects of NaCl in salt-sensitive ‘Perfection’ and ‘Midnight’ Kentucky Bluegrass (Poa pratensis L.). Horticulture, Environment, and Biotechnology 53(6): 477-483
  • Balasta M L F C & Perez C M (1989). Effects of silica level on some properties of Oryza sativa L. straw and hull. Canadian Journal Botany 67: 2356-2363
  • Bouyoucos G J (1951). A recalibration of hydrometer method for making mechanical analysis of soils. Agronomy Journal 143:9
  • Bremner J M & Mulvaney C S (1982). Methods of Soil Analysis, part 2 Chemical and Microbiological Properties, pp. 595-624
  • Cai D (1999). Effect of silicon fertilization on crop grown in the yellow river alluvial plains of China. In: Conference Silicon in Agriculture (26-30 September). Fort Lauderdale, Florida, USA. pp. 26
  • Chai Q, Shao X & Zhang J (2010). Silicon effects on Poa pratensis responses to salinity. The American Society for Horticultural science 45(12): 1876–1881
  • Cooper A W & Dumbroff E B (1973). Plant adjustment to osmotic stress in balanced mineral nutrient media. Canadian Journal of Botany 51: 763-773
  • Cuin T A, Miller A J, Laurie S A & Leigh R A (2003). Potassium activities in cell compartments of saltgrown barley leaves. Journal of Experimental Botany 54: 657-661
  • Dastan S, Ghasemi-Mianaie A, Mobasser H R & Mirhadi M J (2011). Silicon and potassium effects on lodgingrelated morphological characteristics and agronomical indices of rice (Oryza sativa L.) in Iran. Proceedings of The 5 th
  • International Conference on Silicon in Agriculture (13-18 September Beijing China), pp. 3031
  • Day S, Kaya M D & Kolsarıcı Ö (2008). Bazı Çerezlik Ayçiçeği (Helianthus annuus L.) Genotiplerinin Çimlenmesi Üzerine NaCl Konsantrasyonlarının Etkileri. Tarım Bilimleri Dergisi 14(3): 230-236
  • Edreva A (2005). Generation and Scavenging of Reactive Oxygen Species in Chloroplasts: A Submolecular Approach. Agriculture, Ecosystem and Environment 106: 119-133
  • Epstein E (1994). The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences (USA) 91: 11-17
  • Epstein E (1999). Silicon. Annual Review. Plant Physiolgy. Plant Molecular Biology 50: 641–664
  • Epstein E (2001). Silicon in Plants: Facts vs Concepts, In: Datnoff L E, Synder G H, and Korndorfer G H (eds.), Silicon in Agriculture, Elsevier Science, Amsterdam, pp.1-15
  • Exley C (1998). Silicon in life: A bioinorganic solution to bioorganic essentiality. Journal of Inorganic Biochemistry 69: 139-144.
  • Flowers T (2006). Advances in molecular breeding toward drought and salt tolerant crops, Journal of Experimental Botany 57: 1079-1095
  • Gerami M & Rameeh V (2012). Study of silicon and nitrogen effects on yield components and shoot ıons nutrient composition in rice. Agriculture 58(3): 93-98
  • Guetadahan Y, Yaniv Z, Zilikas B A & Benhayyim G (1998). The effect of salt stress on lipid peroxidation and antioxidants in the leaf of cultivated tomato and its wild salt tolerant relative Lycopersicon pennilli. Journal of Plant Physiology 104: 169-174
  • Hanafy Ahmed A H, Harb E M, Higazy M A & Morgan Sh H 200 Effect of silicon and boron foliar applications on wheat plants grown under saline soil conditions. International Journal of Agricultural Research 3: 1-26. Hilal M, Zenoff M, Ponessa G, Moreno H & Massa E M (1997). Saline Stress Alters the Temporal Patterns of Xylem Differentiation and Alternative Oxidase Expression in Developing Soybean Roots. Plant Physiology 117(2): 695-701
  • Hussain M K & Rehman O U (1992). Breeding sunflower for salt tolerance: Genetic variability for yield and yield components for salt tolerance in sunflower (Helianthus annuus L.). In: Proc. Pak. Sci. Conf. 1621 May, Khanspur, Pakistan, pp. 112-117
  • Idris M, Hossain M M & Choudhury F A (1975). The effect of silicon on lodging of rice in presence of added nitrogen. Plant Soil 43: 691-695
  • Islam M Z, Baset Mia M A, Islam M R & Akter A (2007). Effect of different saline levels on growth and yield attributes of mutant rice. Journal of Soil and Nature 1(2): 18-22
  • Kacar B & İnal A (2008). Bitki Analizleri. Nobel Yayın No. 1241, Ankara
  • Kacar B (1984). Bitki Besleme. Ankara Üniversitesi Ziraat Fakültesi Yayın No: 899, Ankara
  • Kacar B (1994). Bitki ve Toprağın Kimyasal Analizleri III, Analizleri. Ankara Üniversitesi Ziraat Fakültesi Eğitim Araştırma ve Geliştirme Vakfı Yayın No:3, Ankara
  • Kacar B & Katkat V (2009). Bitki Besleme. 4. Baskı, Nobel Yayın No:849, Ankara
  • Kardoni F, Seyyed Mosavi S J, Parande S & Torbaghan M E (2013). Effect of salinity stress and silicon application on yield and component yield of fababean (Vicia faba). International Journal of Agriculture and Crop Sciences 6(12): 814-818
  • Kaya C, Tuna L & Higgs D (2006). Effect of silicon on plant growth and mineral nutrition of maize grown under water stress conditions. Journal of Plant Nutrition 29(8): 1469-1480
  • Kim Y, Khan A, Shinwari Z K, Kim DH, Waqas M, Kamran M & Lee I J (2012). Silicon treatment to rice (Oryza Sativa L. Cv ‘Gopumbyeo’) plants during different rowth periods and its effections growth and grain yield. Pakistan Journal of Botany 44(3): 891897
  • Lee D H, Kim Y S & Lee C B (2001). The inductive responses of the antioxidant enzymes by salt stress in rice (Oryza sativa L.). Journal of Plant Physiology 158: 737- 45
  • Lewitt J (1980). Responses of Plants to Environmental Stresses. Vol. II, 2 nd ed. Academic Press, New York, pp. 607
  • Liang Y C, Shen Q R, Shen Z G & Ma T S (1996). Effects of silicon on salinity tolerance of two barley cultivars. Journal of Plant Nutrition 19: 173-183
  • Liang YC (1999). Effects of silicon on enzyme activity, and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209: 217-224
  • Liang Y C & Ding R X (2002). Influence of silicon on micro distribution of mineral ions in roots of saltstressed barley as associated with salt tolerance in plants. Science China (Series C) 45: 298-308
  • Liang Y, Sun W, Zhu Y G & Christie P (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environment and Pollution 147: 422-428
  • Lindsay W L & Norwell W A (1978). Development of a DTPA soil test for zinc, manganese and copper. Soil Science Society of America Journal 42: 421-428.
  • Ma J F, Miyake Y & Takahashi E (1999). Silicon as a beneficial element for crop plant. In: Conference “Silicon in Agriculture”, 26-30 September 1999. Fort Lauderdale, pp. 3. Florida, USA.
  • Ma J F, Miyake Y & Takahashi E (2001). Silicon as a beneficial element for crop plants. In: Datnoff L, Snyder G, Korndorfer G (Eds.), Silicon in Agriculture. Elsevier Science, New York, pp. 17-39
  • Ma J F (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50: 11-18
  • Maathuis F J M & Altmann A (1999). K + Nutrition and Na + toxicity: The basis of cellular K + /Na + ratios. Annual Botany 10: 123-133 229 Shannon M C, Grieve C M & Francois L E (1994). Wholeplant response to salinity R.E. Wilkinson (Ed.), PlantEnvironment Interactions, Mercel Dekker, New York, pp. 199-244
  • Soil Survey Laboratory (1992). Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey. Soil Surv. Invest. Rep. I. U.S. Gov. Print. Office, Washington D.C. USA
  • Soil Survey Staff (1993). Key to Soil Taxonomy. Ninth edition. USDA, Natural Resources Conservation Services
  • Strogonov B P (1964). Physilogical Basics of Salt Tolerance of Plants as Affected by Various Types of Salinity. TPST, Jerusalem
  • Sulok K, Ahmad M T, Asrın W, Rajan A & Ahzam M (2007). Towards growing Bario rice on low land soils: A preliminary nitrogen and potassium fertilization trial. American Journal of Agricultural and Biological Science 2(2): 99-105
  • Tuna A L, Kaya C, Higgs D E B, Murillo-Amador B, Aydemir S & Girgin A R (2008). Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany 62 (1): 10-16
  • Ungar I A (1991). Ecophysiollogy of Vascular Halophytes. Boca Raton FL:CRC Press
  • Yeo A R, Flowers S A, Rao G, Welfare K, Senanayake N & Flowers T J (1999). Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environmental 22: 559-565
  • Yetişir H & Uygur V (2009). Plant growth and mineral element content of different gourd species and watermelon under salinity stress. Turkish Journal of Agriculture and Forestry 33: 65-77
  • Yıldız M & Terzi H (2011). Türkiye’de Ekimi Yapılan Bazı Arpa Çeşitlerinde Erken Fide Evresi Tuz Toleransının Belirlenmesi. Tarım Bilimleri Dergisi 17(1): 1-9
  • Yurtsever N (1984). Deneysel Istatistik Metodları. Gübre Araştırma Enstitüsü Müdürlüğü Yayınları, Teknik Yayın No: 56, Ankara
  • Zhu Z J, Fan H F & He Y (2011). Roles of silicon-mediated alleviation of salt stress in higher plants: A review, Proceedings of the 5th. International Conference on Silicon in Agriculture (September 13-18), Beijing, China, pp. 223-235

Çeltikte (Oryza sativa L.) Tuz Stresinin Azaltılmasında Silisyumlu Gübrelemenin Etkisi

Year 2014, Volume: 20 Issue: 3, 215 - 229, 14.08.2014
https://doi.org/10.15832/tbd.98757

Abstract

Toprak tuzluluğu bitki verim ve kalitesini olumsuz yönde etkileyen en önemli abiyotik stres faktörlerinden birisidir.
Silisyum (Si) bitkilerde stres faktörlerini azaltan bir element olarak bilinmektedir. Bu çalışmanın amacı, tuz x Si
interaksiyonunun çeltik dane verimine, tuzlulaşmanın toprakların yarayışlı Si kapsamına ve tuz stresinin önlenmesinde
Si’un etkilerini incelemektir. Bu amaçla Samsun yöresi çeltik topraklarından 5 adet toprak örneği alınmıştır. Topraklarda
farklı tuz düzeyi oluşturmak için 9:5:5:1 oranında Na2SO4:NaCl:CaCl2:MgSO4 tuz karışımından 1, 2, 3, 4 ve 5 no’lu
topraklara EC değeri sırasıyla, 10.27, 3.55, 10.98, 5.75 ve 7.22 dS m-1’ye ulaşacak şekilde uygulanmıştır. Topraklarda
faktöriyel deneme desenine göre (2 x 5) 3 tekerrürlü sera denemesi kurularak çeltik bitkisi yetiştirilmiştir. Her tuz seviyesinde
(tuzsuz ve tuzlu) topraklara 0, 50, 100, 200 ve 400 mg Si kg-1 silisik asit (H4SiO4) verilmiştir. Ayrıca bütün topraklara
toprak analizine göre yarayışlı NPK seviyeleri eşitlenecek şekilde gübreleme yapılmıştır. Silisyum gübrelemesiyle çeltik
dane veriminde sağlanan ortalama artışın EC’si 3.55 dS m-1 olan toprakta % 55.5 ile EC’si 10.98 dS m-1 olan toprakta
ise % 2.31 arasında olduğu tespit edilmiştir. Tuz x Si interaksiyonu 4 toprakta önemli olduğu ve optimum Si dozunun
toprakların tuz seviyelerine göre değiştiği belirlenmiştir. Toprakların EC seviyeleri arttıkça yarayışlı Si kapsamında ve
Si gübrelemesinin çeltik dane veriminde sağladığı artışlarda azalma görülmüştür. Silisyum çeltik danesinin Na içeriğini
genellikle azaltırken; K içeriğini artırmış; Ca, Mg ve P içeriğinde ise belirgin bir eğilim gözlenmemiştir. Çeltiğin dane
verimi ile Na içeriği arasında çok önemli negatif ilişki (R = - 0.664) elde edilirken, silisyumlu gübreleme danenin
K/Na, Ca/Na, Mg/Na ve P/Na oranlarını genellikle artırmıştır. Sonuç olarak, tuzlu topraklarda yetiştirilen çeltik
bitkisine uygulanacak optimum Si dozunun 200 mg kg-1 olduğu ve çeltik yetiştiriciliğinde silisyumlu gübrelemenin
toprakta tuzluluk ve alkaliliğin zararlarını azaltan pratik bir uygulama olabileceği kanaatine varılmıştır.

References

  • Abdullah Z, Khan M A & Flowers T Z (2001). Causes of sterility in seed set of rice under salinity stress. Journal of Agronomy and Crop Science 167 (1): 25-32
  • Abou-Baker N H, Abd-Eladl M & Mohsen M A (2011). Use of silicate and different cultivation practices in alleviating salt stress effect on bean plants. Australian Journal of Basic and Applied Sciences 5(9): 769-781
  • Acar O (1999). Kurağa dayanıklı bazı arpa (Hordeum ssp.) çeşitlerinde süperoksit dismutaz (SOD) aktivitelerinin araştırılması. Doktora tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü (Basılmamış), İzmir
  • Aktaş M (1994). Bitki Besleme ve Toprak Verimliliği. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ders Kitabı:1361, Ankara
  • Alexieva V, Ivanov S, Sergiev I & Karanov E (2003). Interaction between stresses. Bulgarian Journal of Plant Physiology, Special Issue, pp. 1-17
  • Ali A, Basra S M A, Hussain S, Iqbal J, Alias M A, Bukhsh H A & Sarwar M (2012). Salt stress alleviation in field crops through nutritional supplementation of silicon. Pakistan Journal of Nutrition 11(8): 637-655
  • Alparslan M, Güneş A & Taban S (1998). Tuz stresinde çeltik ve buğday çeşitlerinin kalsiyum, fosfor, demir, bakır, çinko ve mangan kapsamlarında değişmeler. Turkish Journal of Agriculture and Forestry 22: 227-233
  • Apse M P & Blumwald E (2002). Engineering salt tolerance in plants. Current Opinion in Biotechnology 13: 146-150
  • Ashraf M Y, Azmi A R, Khan A H & Ala S A (1994). Effect of water stress on total phenol, peroxidase activity and chlorophyll contents in wheat (Triticum aestivum L.). Acta Physiologiae Plantarum 16: 185-191
  • Ashraf M & Harris P J C (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science 166: 3-16
  • Ashraf M Y, Akhtar K, Hussain F & Iqbal J (2006). Screening of different accession of three potential grass species from Cholistan desert for salt tolerance. Pakistan Journal of Botany 38: 1589-1597
  • Bae E J, Lee K S, Huh M R & Lim C S (2012). Silicon significantly alleviates the growth inhibitory effects of NaCl in salt-sensitive ‘Perfection’ and ‘Midnight’ Kentucky Bluegrass (Poa pratensis L.). Horticulture, Environment, and Biotechnology 53(6): 477-483
  • Balasta M L F C & Perez C M (1989). Effects of silica level on some properties of Oryza sativa L. straw and hull. Canadian Journal Botany 67: 2356-2363
  • Bouyoucos G J (1951). A recalibration of hydrometer method for making mechanical analysis of soils. Agronomy Journal 143:9
  • Bremner J M & Mulvaney C S (1982). Methods of Soil Analysis, part 2 Chemical and Microbiological Properties, pp. 595-624
  • Cai D (1999). Effect of silicon fertilization on crop grown in the yellow river alluvial plains of China. In: Conference Silicon in Agriculture (26-30 September). Fort Lauderdale, Florida, USA. pp. 26
  • Chai Q, Shao X & Zhang J (2010). Silicon effects on Poa pratensis responses to salinity. The American Society for Horticultural science 45(12): 1876–1881
  • Cooper A W & Dumbroff E B (1973). Plant adjustment to osmotic stress in balanced mineral nutrient media. Canadian Journal of Botany 51: 763-773
  • Cuin T A, Miller A J, Laurie S A & Leigh R A (2003). Potassium activities in cell compartments of saltgrown barley leaves. Journal of Experimental Botany 54: 657-661
  • Dastan S, Ghasemi-Mianaie A, Mobasser H R & Mirhadi M J (2011). Silicon and potassium effects on lodgingrelated morphological characteristics and agronomical indices of rice (Oryza sativa L.) in Iran. Proceedings of The 5 th
  • International Conference on Silicon in Agriculture (13-18 September Beijing China), pp. 3031
  • Day S, Kaya M D & Kolsarıcı Ö (2008). Bazı Çerezlik Ayçiçeği (Helianthus annuus L.) Genotiplerinin Çimlenmesi Üzerine NaCl Konsantrasyonlarının Etkileri. Tarım Bilimleri Dergisi 14(3): 230-236
  • Edreva A (2005). Generation and Scavenging of Reactive Oxygen Species in Chloroplasts: A Submolecular Approach. Agriculture, Ecosystem and Environment 106: 119-133
  • Epstein E (1994). The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences (USA) 91: 11-17
  • Epstein E (1999). Silicon. Annual Review. Plant Physiolgy. Plant Molecular Biology 50: 641–664
  • Epstein E (2001). Silicon in Plants: Facts vs Concepts, In: Datnoff L E, Synder G H, and Korndorfer G H (eds.), Silicon in Agriculture, Elsevier Science, Amsterdam, pp.1-15
  • Exley C (1998). Silicon in life: A bioinorganic solution to bioorganic essentiality. Journal of Inorganic Biochemistry 69: 139-144.
  • Flowers T (2006). Advances in molecular breeding toward drought and salt tolerant crops, Journal of Experimental Botany 57: 1079-1095
  • Gerami M & Rameeh V (2012). Study of silicon and nitrogen effects on yield components and shoot ıons nutrient composition in rice. Agriculture 58(3): 93-98
  • Guetadahan Y, Yaniv Z, Zilikas B A & Benhayyim G (1998). The effect of salt stress on lipid peroxidation and antioxidants in the leaf of cultivated tomato and its wild salt tolerant relative Lycopersicon pennilli. Journal of Plant Physiology 104: 169-174
  • Hanafy Ahmed A H, Harb E M, Higazy M A & Morgan Sh H 200 Effect of silicon and boron foliar applications on wheat plants grown under saline soil conditions. International Journal of Agricultural Research 3: 1-26. Hilal M, Zenoff M, Ponessa G, Moreno H & Massa E M (1997). Saline Stress Alters the Temporal Patterns of Xylem Differentiation and Alternative Oxidase Expression in Developing Soybean Roots. Plant Physiology 117(2): 695-701
  • Hussain M K & Rehman O U (1992). Breeding sunflower for salt tolerance: Genetic variability for yield and yield components for salt tolerance in sunflower (Helianthus annuus L.). In: Proc. Pak. Sci. Conf. 1621 May, Khanspur, Pakistan, pp. 112-117
  • Idris M, Hossain M M & Choudhury F A (1975). The effect of silicon on lodging of rice in presence of added nitrogen. Plant Soil 43: 691-695
  • Islam M Z, Baset Mia M A, Islam M R & Akter A (2007). Effect of different saline levels on growth and yield attributes of mutant rice. Journal of Soil and Nature 1(2): 18-22
  • Kacar B & İnal A (2008). Bitki Analizleri. Nobel Yayın No. 1241, Ankara
  • Kacar B (1984). Bitki Besleme. Ankara Üniversitesi Ziraat Fakültesi Yayın No: 899, Ankara
  • Kacar B (1994). Bitki ve Toprağın Kimyasal Analizleri III, Analizleri. Ankara Üniversitesi Ziraat Fakültesi Eğitim Araştırma ve Geliştirme Vakfı Yayın No:3, Ankara
  • Kacar B & Katkat V (2009). Bitki Besleme. 4. Baskı, Nobel Yayın No:849, Ankara
  • Kardoni F, Seyyed Mosavi S J, Parande S & Torbaghan M E (2013). Effect of salinity stress and silicon application on yield and component yield of fababean (Vicia faba). International Journal of Agriculture and Crop Sciences 6(12): 814-818
  • Kaya C, Tuna L & Higgs D (2006). Effect of silicon on plant growth and mineral nutrition of maize grown under water stress conditions. Journal of Plant Nutrition 29(8): 1469-1480
  • Kim Y, Khan A, Shinwari Z K, Kim DH, Waqas M, Kamran M & Lee I J (2012). Silicon treatment to rice (Oryza Sativa L. Cv ‘Gopumbyeo’) plants during different rowth periods and its effections growth and grain yield. Pakistan Journal of Botany 44(3): 891897
  • Lee D H, Kim Y S & Lee C B (2001). The inductive responses of the antioxidant enzymes by salt stress in rice (Oryza sativa L.). Journal of Plant Physiology 158: 737- 45
  • Lewitt J (1980). Responses of Plants to Environmental Stresses. Vol. II, 2 nd ed. Academic Press, New York, pp. 607
  • Liang Y C, Shen Q R, Shen Z G & Ma T S (1996). Effects of silicon on salinity tolerance of two barley cultivars. Journal of Plant Nutrition 19: 173-183
  • Liang YC (1999). Effects of silicon on enzyme activity, and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209: 217-224
  • Liang Y C & Ding R X (2002). Influence of silicon on micro distribution of mineral ions in roots of saltstressed barley as associated with salt tolerance in plants. Science China (Series C) 45: 298-308
  • Liang Y, Sun W, Zhu Y G & Christie P (2007). Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environment and Pollution 147: 422-428
  • Lindsay W L & Norwell W A (1978). Development of a DTPA soil test for zinc, manganese and copper. Soil Science Society of America Journal 42: 421-428.
  • Ma J F, Miyake Y & Takahashi E (1999). Silicon as a beneficial element for crop plant. In: Conference “Silicon in Agriculture”, 26-30 September 1999. Fort Lauderdale, pp. 3. Florida, USA.
  • Ma J F, Miyake Y & Takahashi E (2001). Silicon as a beneficial element for crop plants. In: Datnoff L, Snyder G, Korndorfer G (Eds.), Silicon in Agriculture. Elsevier Science, New York, pp. 17-39
  • Ma J F (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50: 11-18
  • Maathuis F J M & Altmann A (1999). K + Nutrition and Na + toxicity: The basis of cellular K + /Na + ratios. Annual Botany 10: 123-133 229 Shannon M C, Grieve C M & Francois L E (1994). Wholeplant response to salinity R.E. Wilkinson (Ed.), PlantEnvironment Interactions, Mercel Dekker, New York, pp. 199-244
  • Soil Survey Laboratory (1992). Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey. Soil Surv. Invest. Rep. I. U.S. Gov. Print. Office, Washington D.C. USA
  • Soil Survey Staff (1993). Key to Soil Taxonomy. Ninth edition. USDA, Natural Resources Conservation Services
  • Strogonov B P (1964). Physilogical Basics of Salt Tolerance of Plants as Affected by Various Types of Salinity. TPST, Jerusalem
  • Sulok K, Ahmad M T, Asrın W, Rajan A & Ahzam M (2007). Towards growing Bario rice on low land soils: A preliminary nitrogen and potassium fertilization trial. American Journal of Agricultural and Biological Science 2(2): 99-105
  • Tuna A L, Kaya C, Higgs D E B, Murillo-Amador B, Aydemir S & Girgin A R (2008). Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany 62 (1): 10-16
  • Ungar I A (1991). Ecophysiollogy of Vascular Halophytes. Boca Raton FL:CRC Press
  • Yeo A R, Flowers S A, Rao G, Welfare K, Senanayake N & Flowers T J (1999). Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environmental 22: 559-565
  • Yetişir H & Uygur V (2009). Plant growth and mineral element content of different gourd species and watermelon under salinity stress. Turkish Journal of Agriculture and Forestry 33: 65-77
  • Yıldız M & Terzi H (2011). Türkiye’de Ekimi Yapılan Bazı Arpa Çeşitlerinde Erken Fide Evresi Tuz Toleransının Belirlenmesi. Tarım Bilimleri Dergisi 17(1): 1-9
  • Yurtsever N (1984). Deneysel Istatistik Metodları. Gübre Araştırma Enstitüsü Müdürlüğü Yayınları, Teknik Yayın No: 56, Ankara
  • Zhu Z J, Fan H F & He Y (2011). Roles of silicon-mediated alleviation of salt stress in higher plants: A review, Proceedings of the 5th. International Conference on Silicon in Agriculture (September 13-18), Beijing, China, pp. 223-235
There are 63 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Ayhan Horuz

Ahmet Korkmaz

Publication Date August 14, 2014
Submission Date July 18, 2013
Published in Issue Year 2014 Volume: 20 Issue: 3

Cite

APA Horuz, A., & Korkmaz, A. (2014). Çeltikte (Oryza sativa L.) Tuz Stresinin Azaltılmasında Silisyumlu Gübrelemenin Etkisi. Journal of Agricultural Sciences, 20(3), 215-229. https://doi.org/10.15832/tbd.98757

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).