Research Article
BibTex RIS Cite
Year 2022, Volume: 28 Issue: 3, 525 - 534, 05.09.2022
https://doi.org/10.15832/ankutbd.952845

Abstract

References

  • Anderson M C, Kustas W P, Norman J M, Hain C R, Mecikalski J R, Schultz L, Gonzalez-Dugo M P, Cammalleri C, d’Urso G, Pimstein A. & Gao F (2011). Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrology and Earth System Sciences 15: 223-239
  • Chen Y, Li X, Jing L & Shei P (2005). Estimation of daily evapotranspiration using a two-layer remote sensing model. International Journal of Remote Sensing 26 (8): 1755-1762
  • Coğrafya (2019). http://www.cografya.gen.tr/siyasi/devletler/turkiye.htm. Access date: 01.12.2019
  • Du J P & Sun R (2012). Estimation of evapotranspiration for ungauged areas using MODIS measurements and GLDAS data. Procedia Environmental Sciences 13: 1718-1727
  • Fang H, Beaudoing H K, Rodell M, Teng W L, Vollmer B E (2009). Global land data assimilation system (GLDAS) products, services and application from NASA hydrology data and information services center (HDISC), In: ASPRS 2009 Annual Conference, Baltimore, Maryland, 8-13 March
  • Glenn, E P, Huete A R, Nagler P L, Hirschboeck K K & Brown P (2007). Integrating remote sensing and ground methods to estimate evapotranspiration. Critical Reviews in Plant Sciences 26(3): 139-168
  • GSFC (2019). Giovanni. Retrieved in November, 11, 2019 from https://giovanni.gsfc.nasa.gov/giovanni
  • Loeser C, Rui H, Teng W, Ostrenga D, Wei J, McNally A, Jacob J P & Meyer D (2020). Famine early warning systems network (FEWS NET) land data assimilation system (LDAS) and other assimilated hydrological data at NASA GES DISC. In: American Meteorological Society Annual Meeting, 12 January, Boston
  • MGM (2019). Buharlaşma. Retrieved in November, 19, 2019 from https://www.mgm.gov.tr/arastirma/buharlasma.aspx
  • Park J & Choi M (2015). Estimation of evapotranspiration from ground-based meteorological data and global land data assimilation system (GLDAS). Stochastic Environmental Research and Risk Assessment 29: 1963-1992
  • Rodell M, Houser P R, Jambor U, Gottschalk J, Mitchell K, Meng C J, Arsenault K., Cosgrove B, Radakovich J, Bosilovich M, Entin J K, Walker J P, Lohmann D & Toll D (2004). The global land data assimilation system. Bulletion of American Meteorological Society, 85(3): 381-394
  • Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S. P., Koster, R. D., & De Lannoy, G. J. (2017). Assessment of MERRA-2 land surface hydrology estimates. Journal of Climate, 30(8), 2937-2960
  • Swenson S & Wahr J, (2006). Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravity measurements. Journal of Hydrometeorology 7(2): 252-270
  • USGS (2019). Evaporation and the Water Cycle. Retrieved in November, 20, 2019 from https://water.usgs.gov/edu/watercycleevaporation.html

Determining the Relationship of Evapotranspiration with Precipitation and Temperature Over Turkey

Year 2022, Volume: 28 Issue: 3, 525 - 534, 05.09.2022
https://doi.org/10.15832/ankutbd.952845

Abstract

Evapotranspiration (ET), which is a combination of the words evaporation and transpiration, is expressed as the sum of water due to water consumption and evaporation in plants. In this study, the NASA
Drought Early Warning Systems Network Land Data Assimilation System model (FLDAS NOAH) was used to determine evapotranspiration data for the 2018-2019 water years (October 2017-September 2019) on Turkey. In addition, NASA Global Land Data Assimilation System (GLDAS NOAH) was used for temperature data. Total precipitation data with corrected error rates are taken from MERRA-2 Model M2TMNXFLX. The relationship between the determined monthly total average evapotranspiration values and the monthly average precipitation and monthly average temperature values was determined by ArcGIS. It is important to examine the local evaporation and transpiration conditions in more detail in the regions where water resources planning will be made. The importance of water holding capacity in plants in determining agricultural and hydrological drought can be explained by evapotranspiration.


References

  • Anderson M C, Kustas W P, Norman J M, Hain C R, Mecikalski J R, Schultz L, Gonzalez-Dugo M P, Cammalleri C, d’Urso G, Pimstein A. & Gao F (2011). Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrology and Earth System Sciences 15: 223-239
  • Chen Y, Li X, Jing L & Shei P (2005). Estimation of daily evapotranspiration using a two-layer remote sensing model. International Journal of Remote Sensing 26 (8): 1755-1762
  • Coğrafya (2019). http://www.cografya.gen.tr/siyasi/devletler/turkiye.htm. Access date: 01.12.2019
  • Du J P & Sun R (2012). Estimation of evapotranspiration for ungauged areas using MODIS measurements and GLDAS data. Procedia Environmental Sciences 13: 1718-1727
  • Fang H, Beaudoing H K, Rodell M, Teng W L, Vollmer B E (2009). Global land data assimilation system (GLDAS) products, services and application from NASA hydrology data and information services center (HDISC), In: ASPRS 2009 Annual Conference, Baltimore, Maryland, 8-13 March
  • Glenn, E P, Huete A R, Nagler P L, Hirschboeck K K & Brown P (2007). Integrating remote sensing and ground methods to estimate evapotranspiration. Critical Reviews in Plant Sciences 26(3): 139-168
  • GSFC (2019). Giovanni. Retrieved in November, 11, 2019 from https://giovanni.gsfc.nasa.gov/giovanni
  • Loeser C, Rui H, Teng W, Ostrenga D, Wei J, McNally A, Jacob J P & Meyer D (2020). Famine early warning systems network (FEWS NET) land data assimilation system (LDAS) and other assimilated hydrological data at NASA GES DISC. In: American Meteorological Society Annual Meeting, 12 January, Boston
  • MGM (2019). Buharlaşma. Retrieved in November, 19, 2019 from https://www.mgm.gov.tr/arastirma/buharlasma.aspx
  • Park J & Choi M (2015). Estimation of evapotranspiration from ground-based meteorological data and global land data assimilation system (GLDAS). Stochastic Environmental Research and Risk Assessment 29: 1963-1992
  • Rodell M, Houser P R, Jambor U, Gottschalk J, Mitchell K, Meng C J, Arsenault K., Cosgrove B, Radakovich J, Bosilovich M, Entin J K, Walker J P, Lohmann D & Toll D (2004). The global land data assimilation system. Bulletion of American Meteorological Society, 85(3): 381-394
  • Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S. P., Koster, R. D., & De Lannoy, G. J. (2017). Assessment of MERRA-2 land surface hydrology estimates. Journal of Climate, 30(8), 2937-2960
  • Swenson S & Wahr J, (2006). Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravity measurements. Journal of Hydrometeorology 7(2): 252-270
  • USGS (2019). Evaporation and the Water Cycle. Retrieved in November, 20, 2019 from https://water.usgs.gov/edu/watercycleevaporation.html
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Mustafa Kuzay 0000-0002-6205-4819

Mustafa Tuna 0000-0002-9614-6076

Mustafa Tombul 0000-0002-1875-8042

Publication Date September 5, 2022
Submission Date June 15, 2021
Acceptance Date October 13, 2021
Published in Issue Year 2022 Volume: 28 Issue: 3

Cite

APA Kuzay, M., Tuna, M., & Tombul, M. (2022). Determining the Relationship of Evapotranspiration with Precipitation and Temperature Over Turkey. Journal of Agricultural Sciences, 28(3), 525-534. https://doi.org/10.15832/ankutbd.952845

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).