Karkas Etlerde Laktik Asit ile Dekontaminasyon
Year 2022,
Volume: 2 Issue: 1, 36 - 40, 12.01.2023
Özlem Pelincan
,
Emre Hastaoğlu
Abstract
Et ve et ürünleri bakteriyel bozulmaya karşı çok hassastır ve üretim sırasında birçok bakteriyel kontaminasyon kaynağına maruz kalmaktadır. Gıda güvenliğini sağlamak için birçok önlem alınıyor olsa da yeni nesil dekontaminasyon yöntemlerinin kullanımı sınırlıdır. Organik asitlerle dekontaminasyonun ise gıdaların dekontaminasyonunda kullanılmasının insan sağlığına uygun olduğu birçok otorite tarafından belirtilmiştir. Bu çalışmada karkas etinde laktik asitin dekontaminasyon çalışmalarının derlenmesi amaçlanmıştır. Çalışmalar, organik asitlerin farklı konsantrasyonlarda kullanılmasının ve/veya farklı dekontaminasyon teknikleri ile karkas etlerinde kullanılmasının patojenik mikroorganizmaları inhibe etmede son derece etkili olduğunu göstermektedir. Farklı dokular ve karkasın farklı yüzeyleri üzerinde çeşitli konsantrasyonlarda laktik asit ile dekontaminasyon tekniği uygulanarak çeşitli mikroorganizmalar üzerindeki inhibisyon seviyesi araştırılabilir. Ayrıca karkas kesim ve sevkiyat alanlarında farklı temas yüzeylerine çeşitli konsantrasyonlarda laktik asit ile dekontaminasyon tekniği uygulanabilmektedir.
References
- Amani M.S, Zakaria E.M. and Raheem Abd El, K.A. 2017. Environmental Contamination with Methicillin Resistant Staphylococci in Food animal carcasses. Benha Veterinary Medical Journal, 32(1), 170-176.
- Anang, D.M., Rusul, G., Bakar, J. and Ling, F.H. 2007. Effects of lactic acid and lauricidin on the survival of Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli 0157:H7 in chicken breast stored at 4ºC. Food Control,
18, 961-969.
- Anderson, M.E. and Marschall, R.T. 1990. Reducing microbial population on beef tissues: Concentration and temperature of lactic acid. Journal Food Safety, 10, 181-190.
- Ariyapitipun, T., Mustapha, A., Clarke A. D., 1999. Microbial shelf life determination of vacuum-packaged fresh beef treated with polylactic acid, lactic acid, and nisin solutions. Journal of Food Protection, 62 (8): 913–20.
- Beyaz, D. 2007. Koyun Karkaslarının Mikrobiyal Kalitesi Üzerine Laktik Asit Sprey Uygulamasının Etkisi, Doktora Tezi, Uludağ Üniversitesi Sağlık Bilimleri Enstitüsü Besin Hijyeni Ve Teknolojisi Anabilim Dalı, Bursa.
- Bolder, N. M., 1997. Decontamination of meat and poultry carcasses. Trends in Food Science & Technology, 8: 221-227, 1997.
- Castillo, A., Lucia, L.M., Mercado, I. and Acuff, G.R. 2001. In-Plant evaluation of a lactic acif treatment for reduction of bacteria on chilled beef carcasses. Journal Food Protection, 64, (5), 738-740.
- Chaine, A., Arnaud, E., Kondjoyan, A., Collignan, A. and Sarter, S. 2013. Effects of steam and lactic acid treatments on the survival of Salmonella Enteritidis and Campylobacter jejuni inoculated on chicken skin. International Journal Food
Microbiology, 162, 276-282.
- Coşansu, S. and Ayhan, K. 2012. Effects of lactic and acetic acid on survival of Salmonella enteritidis during refrigerated and frozen storage of chicken meats. Food and Bioprocess Technology, 5(1), 372-377.
- Eurpean Union Commission Regulation (EU) No 101/2013 of 4 February 2013. Concerning the use of lactic acid to reduce microbiological surface contamination on bovine carcases.
- Fantelli K. and Stephan, R. 2001. Prevalence and characteristics of shiga toxin producing Escherichia coli and Listeria monocytogenes strains isolated from minced meat in Switzerland. International Journal Food Microbiology, 22, (1-
2), 63-69
- FAO, 2003. Recommended International Code of Practice: General Principles of Food Hygiene’, in Codex Alimentarius Commission Food Hygiene Basic Texts: 3rd edition.
- Gracey, J.F., Collins, D.S. and Huey, R.J. 1999. Meat Hygiene. Tenth Edition. W. B. Saunders Company Ltd, 758, London.
Heinz, G. and Hautzinger, P. 2017. Meat ProcessingTechnology For Small To MediumscaleProducers. FAO Regional Offıce For Asia and The Pacific, 456, Bangkok.
- Ikeda, J.S., Samelis, J., Kendall, P.A., Smith, G.C., Sofos, J.N. 2003. Acid adaptation does not promote survival or growth of Listeria monocytogenes on fresh beef following acid and nonacid decontamination treatments. Journal Food Protection, 66(6), 985-992.
- Koutsoumanis, K.P., Ashton, L.V., Geornaras, I., Belk, K.E., Scanga, J.A., Kendall, P.A., Smith, G.C. and Sofos, J.N. 2004. Effect of single or sequential hot water and lactic acid decontamination treatments on the survival and growth of Listeria monocytogenes and spoilage microflora during aerobic storage of fresh beef at 4, 10 and 25 oC. Journal Food Protection, 67, (12), 2703-2711.
- Latha, C., Anu, C.J., Ajaykumar, V.J. and Sunil, B. 2017. Prevalence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using polimeraze
chain reaction. Veterinary World, 10, 8: 927-931.
- Liu, A., Peng, Z., Zou, L., Zhou, K., Ao, X., He, L. and Chen, S. 2016. The effects of lactic acid-based spray washing on bacterial profile and quality of chicken carcasses. Food Control, 60, 615-620.
- Loretz, M., Stephan, R. and Zweifel, C. 2010. Antimicrobial activity of decontamination teratments for poultry carcasses: A literatüre survey. Food Control, 21, 791-804.
- Ministry of Agriculture and Forestry of Turkish Republic, 2016. Regulation on the use of lactic acid to reduce microbiological superficial contamination in beef carcasses.
- Mohammed, H.M.H. and Abdel-Naeem, H.H.S. 2018. Enhancing the bactericidal efficacy of lactic acid against Salmonella Typhimurium attached to chicken skin by sodiumdodecylsulphate addition. LWT-Food Science and
Technology. 87, 464-469.
- Montserat, M.M. and Yuste, J. 2009. Emerging bacterial pathogens in meat and poultry: an overview. Food and Bioprocess Technology, 3, 24-35.
- Özdemir, H., Yıldırım, Y., Küplülü, Ö., Koluman, A., Göncüoğlu, M. and İnat, G. 2006. Effects of lactic acid and hot water treatments on Salmonella Typhimurium and Listeria monocytogenes. Food Control, 17, 299-303.
- Sakhare, P.Z., Sachindra, N.M., Yashoda, K.P. and Rao Narasimha, D. 1999. Efficacy of intermittent decontamination treatments during processing in reducing the microbial load on broiler chicken carcass. Food Control, 10, 189-194.
- Smulders, F. J. M, Greer, G. G., 1998. Integrating microbial decontamination with organic acids in HACCP programmes for muscle foods: prospects and controversies. International Journal of Food Microbiology, 44: 149–169.
- Sofos, J.N. and Smith, G.C. 1998. Nonacid meat decontamination Technologies: Model studies and commercial applications. International Journal Food Microbiology, 44, 171-188.
- Tamblyn, K.C. and Conner, D.E. 1997. Bactericidal activity of organic acids against Salmonella Typhimurium attached to broiler chicken skin. Journal Food Protection, 60(6), 629-633.
- USDA–FSIS. Notice of policy change; achieving the zero tolerance performance standard for beef carcasses by knife trimming and vacuuming with hot water or steam; use of acceptable carcass interventions for reducing carcass contamination without prior agency approval. United States Department of Agriculture, Food
Safety and Inspection Service. Fed. Reg., 61: 15024–15027, 1996
- Van Netten P, Mossel D. A. A., Huis İ, 1997. Microbial changes on freshly slaughtered pork carcasses due to hot lactic acid decontamination. Journal of Food Science, 17 (2): 89–111.
- Yeh, Y., De Moura, F.H., Van den Broek, K. and De Mello, A.S. 2018. Effect of ultraviolet light, organic acids, and bacteriophage on Salmonella populations in ground beef. Meat Science, 139, 44-48.
- Yusufu, G. 2019. Investigation of the Effect of Lactic Acid and Hot Steam Applications on Microorganism Numbers in beef Inoculated with Listeria monocytogenes and Staphylococcus aureus. MSc, Ankara University, Ankara
Lactic Acid Decontamination in Carcass Meat
Year 2022,
Volume: 2 Issue: 1, 36 - 40, 12.01.2023
Özlem Pelincan
,
Emre Hastaoğlu
Abstract
Meat and meat products are very sensitive to bacterial spoilage and are exposed to many sources of bacterial contamination during production. Although many measures are being taken to ensure food safety, the use of new generation decontamination methods is limited. Decontamination with organic acids, on the other hand, has been stated by many authorities to be suitable for human health to be used in decontamination of foods. In this study, it is aimed to compile the decontamination studies of lactic acid on carcass meat. Studies show that the use of organic acids in different concentrations and/or use in carcass meats with different decontamination techniques is extremely effective in inhibiting pathogenic microorganisms. The level of inhibition on various microorganisms can be investigated by applying the decontamination technique with lactic acid at various concentrations on different tissues and different surfaces of the carcass. In addition, decontamination technique with various concentrations of lactic acid can be applied on different contact surfaces in carcass slaughter and shipping areas
References
- Amani M.S, Zakaria E.M. and Raheem Abd El, K.A. 2017. Environmental Contamination with Methicillin Resistant Staphylococci in Food animal carcasses. Benha Veterinary Medical Journal, 32(1), 170-176.
- Anang, D.M., Rusul, G., Bakar, J. and Ling, F.H. 2007. Effects of lactic acid and lauricidin on the survival of Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli 0157:H7 in chicken breast stored at 4ºC. Food Control,
18, 961-969.
- Anderson, M.E. and Marschall, R.T. 1990. Reducing microbial population on beef tissues: Concentration and temperature of lactic acid. Journal Food Safety, 10, 181-190.
- Ariyapitipun, T., Mustapha, A., Clarke A. D., 1999. Microbial shelf life determination of vacuum-packaged fresh beef treated with polylactic acid, lactic acid, and nisin solutions. Journal of Food Protection, 62 (8): 913–20.
- Beyaz, D. 2007. Koyun Karkaslarının Mikrobiyal Kalitesi Üzerine Laktik Asit Sprey Uygulamasının Etkisi, Doktora Tezi, Uludağ Üniversitesi Sağlık Bilimleri Enstitüsü Besin Hijyeni Ve Teknolojisi Anabilim Dalı, Bursa.
- Bolder, N. M., 1997. Decontamination of meat and poultry carcasses. Trends in Food Science & Technology, 8: 221-227, 1997.
- Castillo, A., Lucia, L.M., Mercado, I. and Acuff, G.R. 2001. In-Plant evaluation of a lactic acif treatment for reduction of bacteria on chilled beef carcasses. Journal Food Protection, 64, (5), 738-740.
- Chaine, A., Arnaud, E., Kondjoyan, A., Collignan, A. and Sarter, S. 2013. Effects of steam and lactic acid treatments on the survival of Salmonella Enteritidis and Campylobacter jejuni inoculated on chicken skin. International Journal Food
Microbiology, 162, 276-282.
- Coşansu, S. and Ayhan, K. 2012. Effects of lactic and acetic acid on survival of Salmonella enteritidis during refrigerated and frozen storage of chicken meats. Food and Bioprocess Technology, 5(1), 372-377.
- Eurpean Union Commission Regulation (EU) No 101/2013 of 4 February 2013. Concerning the use of lactic acid to reduce microbiological surface contamination on bovine carcases.
- Fantelli K. and Stephan, R. 2001. Prevalence and characteristics of shiga toxin producing Escherichia coli and Listeria monocytogenes strains isolated from minced meat in Switzerland. International Journal Food Microbiology, 22, (1-
2), 63-69
- FAO, 2003. Recommended International Code of Practice: General Principles of Food Hygiene’, in Codex Alimentarius Commission Food Hygiene Basic Texts: 3rd edition.
- Gracey, J.F., Collins, D.S. and Huey, R.J. 1999. Meat Hygiene. Tenth Edition. W. B. Saunders Company Ltd, 758, London.
Heinz, G. and Hautzinger, P. 2017. Meat ProcessingTechnology For Small To MediumscaleProducers. FAO Regional Offıce For Asia and The Pacific, 456, Bangkok.
- Ikeda, J.S., Samelis, J., Kendall, P.A., Smith, G.C., Sofos, J.N. 2003. Acid adaptation does not promote survival or growth of Listeria monocytogenes on fresh beef following acid and nonacid decontamination treatments. Journal Food Protection, 66(6), 985-992.
- Koutsoumanis, K.P., Ashton, L.V., Geornaras, I., Belk, K.E., Scanga, J.A., Kendall, P.A., Smith, G.C. and Sofos, J.N. 2004. Effect of single or sequential hot water and lactic acid decontamination treatments on the survival and growth of Listeria monocytogenes and spoilage microflora during aerobic storage of fresh beef at 4, 10 and 25 oC. Journal Food Protection, 67, (12), 2703-2711.
- Latha, C., Anu, C.J., Ajaykumar, V.J. and Sunil, B. 2017. Prevalence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using polimeraze
chain reaction. Veterinary World, 10, 8: 927-931.
- Liu, A., Peng, Z., Zou, L., Zhou, K., Ao, X., He, L. and Chen, S. 2016. The effects of lactic acid-based spray washing on bacterial profile and quality of chicken carcasses. Food Control, 60, 615-620.
- Loretz, M., Stephan, R. and Zweifel, C. 2010. Antimicrobial activity of decontamination teratments for poultry carcasses: A literatüre survey. Food Control, 21, 791-804.
- Ministry of Agriculture and Forestry of Turkish Republic, 2016. Regulation on the use of lactic acid to reduce microbiological superficial contamination in beef carcasses.
- Mohammed, H.M.H. and Abdel-Naeem, H.H.S. 2018. Enhancing the bactericidal efficacy of lactic acid against Salmonella Typhimurium attached to chicken skin by sodiumdodecylsulphate addition. LWT-Food Science and
Technology. 87, 464-469.
- Montserat, M.M. and Yuste, J. 2009. Emerging bacterial pathogens in meat and poultry: an overview. Food and Bioprocess Technology, 3, 24-35.
- Özdemir, H., Yıldırım, Y., Küplülü, Ö., Koluman, A., Göncüoğlu, M. and İnat, G. 2006. Effects of lactic acid and hot water treatments on Salmonella Typhimurium and Listeria monocytogenes. Food Control, 17, 299-303.
- Sakhare, P.Z., Sachindra, N.M., Yashoda, K.P. and Rao Narasimha, D. 1999. Efficacy of intermittent decontamination treatments during processing in reducing the microbial load on broiler chicken carcass. Food Control, 10, 189-194.
- Smulders, F. J. M, Greer, G. G., 1998. Integrating microbial decontamination with organic acids in HACCP programmes for muscle foods: prospects and controversies. International Journal of Food Microbiology, 44: 149–169.
- Sofos, J.N. and Smith, G.C. 1998. Nonacid meat decontamination Technologies: Model studies and commercial applications. International Journal Food Microbiology, 44, 171-188.
- Tamblyn, K.C. and Conner, D.E. 1997. Bactericidal activity of organic acids against Salmonella Typhimurium attached to broiler chicken skin. Journal Food Protection, 60(6), 629-633.
- USDA–FSIS. Notice of policy change; achieving the zero tolerance performance standard for beef carcasses by knife trimming and vacuuming with hot water or steam; use of acceptable carcass interventions for reducing carcass contamination without prior agency approval. United States Department of Agriculture, Food
Safety and Inspection Service. Fed. Reg., 61: 15024–15027, 1996
- Van Netten P, Mossel D. A. A., Huis İ, 1997. Microbial changes on freshly slaughtered pork carcasses due to hot lactic acid decontamination. Journal of Food Science, 17 (2): 89–111.
- Yeh, Y., De Moura, F.H., Van den Broek, K. and De Mello, A.S. 2018. Effect of ultraviolet light, organic acids, and bacteriophage on Salmonella populations in ground beef. Meat Science, 139, 44-48.
- Yusufu, G. 2019. Investigation of the Effect of Lactic Acid and Hot Steam Applications on Microorganism Numbers in beef Inoculated with Listeria monocytogenes and Staphylococcus aureus. MSc, Ankara University, Ankara