Research Article
BibTex RIS Cite

Türkiye'nin geleneksel peynirlerinden Çökelek'ten izole edilen laktik asit bakterileri tarafından üretilmiş ekzopolisakkaritlerin kısmi karakterizasyonu ve antioksidan aktiviteleri

Year 2022, Volume: 1 Issue: 2 (Temmuz), 1 - 8, 31.07.2022

Abstract

Bu çalışma kapsamında Türkiye'nin Gümüşhane ili yaylalarında geleneksel olarak üretilmiş 13 farklı çökelek peyniri örneği toplanmıştır. Bu örneklerden toplam 35 farklı suş izole edilmiştir. Genotipik karakterizasyon sonucunda 9 izolatın 16S rRNA gen dizilimine göre laktik asit bakteri suşu olduğu belirlenmiştir. Bu suşların iki tanesinin Lactobacillus brevis; diğerlerinin ise Lactobacillus plantarum, Lactobacillus kefiri, Lactobacillus paracasei, Lactococcus garvieae, Lactococcus lactis ssp. lactis, Enterococcus casseliflavus, Pediococcus acidilactici suşları olduğu tespit edilmiştir. Bu 9 suşun arasından 5 tanesi mevcut literatür ve koloni morfolojisi dikkate alınmak sureti ile EPS üreticisi LAB olarak seçilmiştir. Seçilen LAB suşlarının ürettikleri EPS örneklerinin tamamının glukoz, galaktoz ve fruktoz monosakkaritlerinden oluşan heteropolimerik yapıda olduğu belirlenmiştir. EPS örneklerinin antioksidan aktivite özellikleri ABTS ve DPPH radikal süpürücü aktivite testleri ile belirlenmiştir. Sonuç olarak ilgili EPS’lerin DPPH süpürme aktivitelerinin %41,20 ile %59,13 arasında değiştiği ve en yüksek değerin ise Lactobacillus brevis LS13 örneğine ait olduğu ortaya çıkmıştır. ABTS yönteminde ise en yüksek antioksidan aktivite değerinin (%71,43) Lactobacillus kefiri LS15 tarafından üretilen EPS numunesine ait olduğu ve bunu Lactobacillus brevis LS13 (%70,27), Lactobacillus paracasei LM13 (%68,81), Pediococcus acidilactici LS6 (%63,28) ve Lactobacillus plantarum LS11 (%60,82) örneklerinin izlediği tespit edilmiştir.

Supporting Institution

Atatürk Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FBA-2019-6985

References

  • Abriouel, H., Martín-Platero, A., Maqueda, M., Valdivia, E., & Martínez-Bueno, M. (2008). Biodiversity of the microbial community in a Spanish farmhouse cheese as revealed by culture-dependent and culture-independent methods. International Journal of Food Microbiology, 127(3), 200-208.
  • Aburas, H., İspirli, H., Taylan, O., Yilmaz, M.T., Dertli, E. (2020). Structural and physicochemical characterization and antioxidant activity of an α-D-glucan produced by sourdough isolate Weissella cibaria MED17. International Journal of Biological Macromolecules, 161:648-655.
  • Badel, S., Bernardı, T. Mıchaud, P. (2011). New perspectives for Lactobacilli exopolysaccharides. Biotechnology Advances, 29, 54-66.
  • Baker, G.C., Smith, J.J., Cowan, D.A. (2003). Review and re-analysis of domain-spesific 16S primers. Journal of Microbiological Methods, 55(3),541-555.
  • Bao, Q., Liu, W., Yu, J., Wang, W., Qing, M., Chen, X., Zhang, H. (2012). Isolation and identification of cultivable lactic acid bacteria in traditional yak milk products of Gansu Province in China. The Journal of General and Applied Microbiology, 58(2), 95-105.
  • Beć, K. B., Grabska, J., Huck, C. W. (2020). Biomolecular and bioanalytical applications of infrared spectroscopy–A review. Analytica Chimica Acta, 1133, 150-177.
  • Bouton, Y., Guyot, P. and Grappin, R. (1998). Preliminary characterization of microflora of Comté cheese. Journal of Applied Microbiology, 85(1), 123-131.
  • Broadbent, J. R., Mcmahon, D. J., Welker, D. L., Oberg, C. J., Moıneau, S. (2003). Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. Journal of Dairy Science, 86, 407-23.
  • Callon, C., Millet, L., Montel, M. C. (2004). Diversity of lactic acid bacteria isolated from AOC Salers cheese. Journal of Dairy Research, 71(2), 231-244.
  • Caplice, E. and Fitzgerald, G. F. (1999). Food fermentations: role of microorganisms in food production and preservation. International Journal of Food Microbiology, 50, 131–149.
  • Colombo, F., Borgo, F., Fortina, M. G. (2009). Genotypic characterization of non-starter lactic acid bacteria involved in the ripening of artisanal Bitto PDO cheese. Journal of Basic Microbiology, 49(6), 521-530.
  • Dertli, E. (2015). Isolation and identification of an exopolysaccharide producer Streptococcus thermophilus strain from Turkish yogurt. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 21(2), 229-232.
  • Dertli, E., Mercan, E., Arıcı, M., Yılmaz, M.T., Sağdıç, O. (2016). Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. LWT – Food Science and Technology,71, 116-124.
  • Dertli, E., Colquhoun, I.J., Cote, G.L., Le Gall, G., Narbad, A. (2018). Structural analysis of the α-D-glucan produced by the sourdough isolate Lactobacillus brevis E25. Food Chemistry, 242:45-52.
  • Dinic, M., Pecikoza, U., Djokic, J., Stepanovic-Petrovic, R., Milenkovic, M., Stevanovic, M., Lukic, J. (2018). Exopolysaccharide produced by probiotic strain Lactobacillus paraplantarum BGCG11 reduces inflammatory hyperalgesia in rats. Frontiers in Pharmacology, 9, 1.
  • Domingos-Lopes, M. F. P., Stanton, C., Ross, P. R., Dapkevicius, M. L. E., & Silva, C. C. G. (2017). Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal Pico cheese. Food microbiology, 63, 178-190.
  • Fitzsimons, N. A., Cogan, T. M., Condon, S., Beresford, T. (1999). Phenotypic and genotypic characterization of non-starter lactic acid bacteria in mature cheddar cheese. Applied and Environmental Microbiology, 65(8), 3418-3426.
  • Franciosi, E., Settanni, L., Cavazza, A., Poznanski, E. (2009). Presence of enterococci in raw cow's milk and “Puzzone di Moena” cheese. Journal of Food Processing and Preservation, 33(2), 204-217.
  • González, L., Sandoval, H., Sacristán, N., Castro, J. M., Fresno, J. M., & Tornadijo, M. E. (2007). Identification of lactic acid bacteria isolated from Genestoso cheese throughout ripening and study of their antimicrobial activity. Food Control, 18(6), 716-722.
  • Herreros, M. A., Fresno, J. M., Prieto, M. G., Tornadijo, M. E. (2003). Technological characterization of lactic acid bacteria isolated from Armada cheese (a Spanish goats’ milk cheese). International Dairy Journal, 13(6), 469-479.
  • Hussain, A., Zia, K.M., Tabasum, S., Noreen, A., Ali, M., Iqbal, R., Zuber, M. (2017). Blends and composites of exopolysaccharides; properties and applications: A review. International Journal of Biological Macromolecules, 94, 10-27.
  • İspirli, H., Demirbaş, F., Dertli, E. (2017). Characterization of functional properties of Enterococcus spp. Isolated from Turkish white cheese. LWT – Food Science and Technology,75, 358-365.
  • Kavaz, A., Arslaner, A., Bakırcı, İ. (2012). Comparison of quality characteristics of Çökelek and Lor cheeses. African Journal of Biotechnology, 11(26), 6871-6877.
  • Korcz, E., Kerényi, Z., Varga, L. (2018). Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: potential health benefits with special regard to cholesterol-lowering effects. Food & Function, 9(6), 3057-3068.
  • Leroy, F. and De Vust, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermantation industry. Trends in Food Science & Technology, 15(2), 67-78.
  • Moraes, P. M., Perin, L. M., Todorov, S. D., Silva Jr, A., Franco, B. D. G. D. M., Nero, L. A. (2012). Bacteriocinogenic and virulence potential of Enterococcus isolates obtained from raw milk and cheese. Journal of Applied Microbiology, 113(2), 318-328.
  • Nacher-Vázquez, M., Ballesteros, N., Canales, Á., Saint-Jean, S.R., Pérez-Prieto, S.I., Prieto, A., López, P. (2015). Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses. Carbohydrate Polymers, 124, 292-301.
  • Nionelli, L., Montemurro, M., Pontonio, E., Verni, M., Gobbetti, M., Rizzello, C. G. (2018). Pro-technological and functional characterization of lactic acid bacteria to be used as starters for hemp (Cannabis sativa L.) sourdough fermentation and wheat bread fortification. International Journal of Food Microbiology, 279, 14-25.
  • Obis, D, Paris, M., Ouwehand, A.C. (2019). The Safety of Lactic Acid Bacteria for Use in Foods. In Vinderola, G., Ouwehand, A.C., Salminen, S., Wright, A.V. (Eds.), Lactic acid bacteria microbiological and functional aspects, fifth edition (pp. 355-365). Boca Raton, Florida, CRC Press.
  • Öksüztepe, G. A., Patır, B., Dikici, A., Bozkurt, Ö. P., Çalıcıoğlu, M. (2007). Mcrobiological and chemical quality of cokelek marketed in Elazığ. Fırat Üniversitesi Sağlık Bilimleri Dergisi, 21(1), 27-31.
  • Park, F. S. (1971). Application of IR spectroscopy in biochemistry. Biology and Medicine, Plenum Press, New York, NY, 100-140.
  • Rani, R. P., Anandharaj, M., Sabhapathy, P., Ravindran, A. D. (2017). Physiochemical and biological characterization of novel exopolysaccharide produced by Bacillus tequilensis FR9 isolated from chicken. International Journal of Biological Macromolecules, 96, 1-10.
  • Ray, B. (1992). The need for food biopreservation. In B. Ray, & M. Daeschel (Eds.), Food biopreservatives of microbial origin (pp. 1–23). Boca Raton, Florida: CRC Press.
  • Roman, S., Sánchez-Siles, L. M., Siegrist, M. (2017). The importance of food naturalness for consumers: Results of a systematic review. Trends in Food Science & Technology, 67, 44-57.
  • Sanlibaba, P. and Çakmak, G. A. (2016). Exopolysaccharides production by lactic acid bacteria. Applied Microbiology, 2(115), 10-4172.
  • Singh, R. P., Shukla, M. K., Mishra, A., Kumari, P., Reddy, C. R. K., & Jha, B. (2011). Isolation and characterization of exopolysaccharides from seaweed associated bacteria Bacillus licheniformis. Carbohydrate Polymers, 84(3), 1019-1026.
  • Sirajunnisa, A. R., Vijayagopal, V., Sivaprakash, B., Viruthagiri, T., Surendhiran, D. (2016). Optimization, kinetics and antioxidant activity of exopolysaccharide produced from rhizosphere isolate, Pseudomonas fluorescens CrN6. Carbohydrate Polymers, 135, 35-43.
  • Swearingen, P. A., O'sullivan, D. J., Warthesen, J. J. (2001). Isolation, characterization, and influence of native, nonstarter lactic acid bacteria on Cheddar cheese quality. Journal of Dairy Science, 84(1), 50-59.
  • Taylan, O., Yilmaz, M. T., Dertli, E. (2019). Partial characterization of a levan type exopolysaccharide (EPS) produced by Leuconostoc mesenteroides showing immunostimulatory and antioxidant activities. International Journal of Biological Macromolecules, 136, 436-444.
  • Trabelsi, I., Ktari, N., Slima, S. B., Triki, M., Bardaa, S., Mnif, H., Salah, R. B. (2017). Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp. Ca6. International Journal of Biological Macromolecules, 103, 194-201.
  • Veljovic, K., Terzic‐Vidojevic, A., Vukasinovic, M., Strahinic, I., Begovic, J., Lozo, J., Topisirovic, L. (2007). Preliminary characterization of lactic acid bacteria isolated from Zlatar cheese. Journal of Applied Microbiology, 103(6), 2142-2152.
  • Yildiz, H., and Karatas, N. (2018). Microbial exopolysaccharides: Resources and bioactive properties. Process Biochemistry, 72, 41-46.
  • Wang, J., Zhao, X., Yang, Y., Zhao, A., Yang, Z. (2015). Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International Journal of Biological Macromolecules, 74, 119-126.
  • Wang, K., Li, W., Rui, X., Chen, X., Jiang, M., Dong, M. (2014). Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. International Journal of Biological Macromolecules, 63, 133-139.
  • Wang, Y., Li, C., Liu, P., Ahmed, Z., Xiao, P., Bai, X. (2010). Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohydrate Polymers, 82(3), 895-903.
  • Wood, B. J. B. (1997). Microbiology of fermented foods. London: Blackie Academic & Professional.
  • Wood, B. J. B. And Holzapfel, W. H. (1995). The genera of lactic acid bacteria. London: Blackie Academic & Professional.
  • Xu, Y., Cui, Y., Wang, X., Yue, F., Shan, Y., Liu, B., Zhou, Y., Yanglei, Y., Lü, X. (2019). Purification, characterization and bioactivity of exopolysaccharides produced by Lactobacillus plantarum KX041. International Journal of Biological Macromolecules, 128:480-492.
  • Zhang, L., Liu, C., Li, D., Zhao, Y., Zhang, X., Zeng, X., Li, S. (2013). Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. International Journal of Biological Macromolecules, 54, 270-275.
  • Zhou, Y., Cui, Y., Qu, X. (2019). Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydrate polymers, 207, 317-332.

Partial characterization and antioxidant activity of exopolysaccharides produced by lactic acid bacteria isolated from “Çökelek” a traditional cheese in Türkiye

Year 2022, Volume: 1 Issue: 2 (Temmuz), 1 - 8, 31.07.2022

Abstract

In this study, 13 different traditionally produced “çökelek” cheese samples were collected from the plateaus of Gümüşhane province, Turkiye. A total of 35 different strains were isolated from these samples. As a result of genotypic characterization, 9 isolates were determined to be lactic acid bacteria (LAB) strains according to the 16S rRNA gene sequence. It was determined that 9 LAB strains were Lactobacillus brevis (2), Lactobacillus plantarum, Lactobacillus kefiri, Lactobacillus paracasei, Lactococcus garvieae, Lactococcus lactis ssp. lactis, Enterococcus casseliflavus and Pediococcus acidilactici strains. 5 strains of 9 LAB strains were selected as EPS producer LAB according to the literature and by observing colony morphology. It was determined that all EPS samples are heteropolymeric structures consisting of glucose, galactose and fructose monosaccharides. Antioxidant characteristics of EPS samples were determined by ABTS and DPPH radical scavenging activity tests. As a result of the antioxidant activity tests, it was determined that EPS samples had between 41.20% and 59.13% DPPH scavenging activity, while the EPS sample with the highest DPPH scavenging activity produced by Lactobacillus brevis LS13. According to ABTS scavenging assay, EPS sample produced by Lactobacillus kefiri LS15 showed the highest antioxidant activity among EPS samples (71,43%). This was followed by Lactobacillus brevis LS13 (70,27%), Lactobacillus paracasei LM13 (68,81%), Pediococcus acidilactici LS6 (63,28%) and Lactobacillus plantarum LS11 (60,82%) samples, respectively.

Project Number

FBA-2019-6985

References

  • Abriouel, H., Martín-Platero, A., Maqueda, M., Valdivia, E., & Martínez-Bueno, M. (2008). Biodiversity of the microbial community in a Spanish farmhouse cheese as revealed by culture-dependent and culture-independent methods. International Journal of Food Microbiology, 127(3), 200-208.
  • Aburas, H., İspirli, H., Taylan, O., Yilmaz, M.T., Dertli, E. (2020). Structural and physicochemical characterization and antioxidant activity of an α-D-glucan produced by sourdough isolate Weissella cibaria MED17. International Journal of Biological Macromolecules, 161:648-655.
  • Badel, S., Bernardı, T. Mıchaud, P. (2011). New perspectives for Lactobacilli exopolysaccharides. Biotechnology Advances, 29, 54-66.
  • Baker, G.C., Smith, J.J., Cowan, D.A. (2003). Review and re-analysis of domain-spesific 16S primers. Journal of Microbiological Methods, 55(3),541-555.
  • Bao, Q., Liu, W., Yu, J., Wang, W., Qing, M., Chen, X., Zhang, H. (2012). Isolation and identification of cultivable lactic acid bacteria in traditional yak milk products of Gansu Province in China. The Journal of General and Applied Microbiology, 58(2), 95-105.
  • Beć, K. B., Grabska, J., Huck, C. W. (2020). Biomolecular and bioanalytical applications of infrared spectroscopy–A review. Analytica Chimica Acta, 1133, 150-177.
  • Bouton, Y., Guyot, P. and Grappin, R. (1998). Preliminary characterization of microflora of Comté cheese. Journal of Applied Microbiology, 85(1), 123-131.
  • Broadbent, J. R., Mcmahon, D. J., Welker, D. L., Oberg, C. J., Moıneau, S. (2003). Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. Journal of Dairy Science, 86, 407-23.
  • Callon, C., Millet, L., Montel, M. C. (2004). Diversity of lactic acid bacteria isolated from AOC Salers cheese. Journal of Dairy Research, 71(2), 231-244.
  • Caplice, E. and Fitzgerald, G. F. (1999). Food fermentations: role of microorganisms in food production and preservation. International Journal of Food Microbiology, 50, 131–149.
  • Colombo, F., Borgo, F., Fortina, M. G. (2009). Genotypic characterization of non-starter lactic acid bacteria involved in the ripening of artisanal Bitto PDO cheese. Journal of Basic Microbiology, 49(6), 521-530.
  • Dertli, E. (2015). Isolation and identification of an exopolysaccharide producer Streptococcus thermophilus strain from Turkish yogurt. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 21(2), 229-232.
  • Dertli, E., Mercan, E., Arıcı, M., Yılmaz, M.T., Sağdıç, O. (2016). Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. LWT – Food Science and Technology,71, 116-124.
  • Dertli, E., Colquhoun, I.J., Cote, G.L., Le Gall, G., Narbad, A. (2018). Structural analysis of the α-D-glucan produced by the sourdough isolate Lactobacillus brevis E25. Food Chemistry, 242:45-52.
  • Dinic, M., Pecikoza, U., Djokic, J., Stepanovic-Petrovic, R., Milenkovic, M., Stevanovic, M., Lukic, J. (2018). Exopolysaccharide produced by probiotic strain Lactobacillus paraplantarum BGCG11 reduces inflammatory hyperalgesia in rats. Frontiers in Pharmacology, 9, 1.
  • Domingos-Lopes, M. F. P., Stanton, C., Ross, P. R., Dapkevicius, M. L. E., & Silva, C. C. G. (2017). Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal Pico cheese. Food microbiology, 63, 178-190.
  • Fitzsimons, N. A., Cogan, T. M., Condon, S., Beresford, T. (1999). Phenotypic and genotypic characterization of non-starter lactic acid bacteria in mature cheddar cheese. Applied and Environmental Microbiology, 65(8), 3418-3426.
  • Franciosi, E., Settanni, L., Cavazza, A., Poznanski, E. (2009). Presence of enterococci in raw cow's milk and “Puzzone di Moena” cheese. Journal of Food Processing and Preservation, 33(2), 204-217.
  • González, L., Sandoval, H., Sacristán, N., Castro, J. M., Fresno, J. M., & Tornadijo, M. E. (2007). Identification of lactic acid bacteria isolated from Genestoso cheese throughout ripening and study of their antimicrobial activity. Food Control, 18(6), 716-722.
  • Herreros, M. A., Fresno, J. M., Prieto, M. G., Tornadijo, M. E. (2003). Technological characterization of lactic acid bacteria isolated from Armada cheese (a Spanish goats’ milk cheese). International Dairy Journal, 13(6), 469-479.
  • Hussain, A., Zia, K.M., Tabasum, S., Noreen, A., Ali, M., Iqbal, R., Zuber, M. (2017). Blends and composites of exopolysaccharides; properties and applications: A review. International Journal of Biological Macromolecules, 94, 10-27.
  • İspirli, H., Demirbaş, F., Dertli, E. (2017). Characterization of functional properties of Enterococcus spp. Isolated from Turkish white cheese. LWT – Food Science and Technology,75, 358-365.
  • Kavaz, A., Arslaner, A., Bakırcı, İ. (2012). Comparison of quality characteristics of Çökelek and Lor cheeses. African Journal of Biotechnology, 11(26), 6871-6877.
  • Korcz, E., Kerényi, Z., Varga, L. (2018). Dietary fibers, prebiotics, and exopolysaccharides produced by lactic acid bacteria: potential health benefits with special regard to cholesterol-lowering effects. Food & Function, 9(6), 3057-3068.
  • Leroy, F. and De Vust, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermantation industry. Trends in Food Science & Technology, 15(2), 67-78.
  • Moraes, P. M., Perin, L. M., Todorov, S. D., Silva Jr, A., Franco, B. D. G. D. M., Nero, L. A. (2012). Bacteriocinogenic and virulence potential of Enterococcus isolates obtained from raw milk and cheese. Journal of Applied Microbiology, 113(2), 318-328.
  • Nacher-Vázquez, M., Ballesteros, N., Canales, Á., Saint-Jean, S.R., Pérez-Prieto, S.I., Prieto, A., López, P. (2015). Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses. Carbohydrate Polymers, 124, 292-301.
  • Nionelli, L., Montemurro, M., Pontonio, E., Verni, M., Gobbetti, M., Rizzello, C. G. (2018). Pro-technological and functional characterization of lactic acid bacteria to be used as starters for hemp (Cannabis sativa L.) sourdough fermentation and wheat bread fortification. International Journal of Food Microbiology, 279, 14-25.
  • Obis, D, Paris, M., Ouwehand, A.C. (2019). The Safety of Lactic Acid Bacteria for Use in Foods. In Vinderola, G., Ouwehand, A.C., Salminen, S., Wright, A.V. (Eds.), Lactic acid bacteria microbiological and functional aspects, fifth edition (pp. 355-365). Boca Raton, Florida, CRC Press.
  • Öksüztepe, G. A., Patır, B., Dikici, A., Bozkurt, Ö. P., Çalıcıoğlu, M. (2007). Mcrobiological and chemical quality of cokelek marketed in Elazığ. Fırat Üniversitesi Sağlık Bilimleri Dergisi, 21(1), 27-31.
  • Park, F. S. (1971). Application of IR spectroscopy in biochemistry. Biology and Medicine, Plenum Press, New York, NY, 100-140.
  • Rani, R. P., Anandharaj, M., Sabhapathy, P., Ravindran, A. D. (2017). Physiochemical and biological characterization of novel exopolysaccharide produced by Bacillus tequilensis FR9 isolated from chicken. International Journal of Biological Macromolecules, 96, 1-10.
  • Ray, B. (1992). The need for food biopreservation. In B. Ray, & M. Daeschel (Eds.), Food biopreservatives of microbial origin (pp. 1–23). Boca Raton, Florida: CRC Press.
  • Roman, S., Sánchez-Siles, L. M., Siegrist, M. (2017). The importance of food naturalness for consumers: Results of a systematic review. Trends in Food Science & Technology, 67, 44-57.
  • Sanlibaba, P. and Çakmak, G. A. (2016). Exopolysaccharides production by lactic acid bacteria. Applied Microbiology, 2(115), 10-4172.
  • Singh, R. P., Shukla, M. K., Mishra, A., Kumari, P., Reddy, C. R. K., & Jha, B. (2011). Isolation and characterization of exopolysaccharides from seaweed associated bacteria Bacillus licheniformis. Carbohydrate Polymers, 84(3), 1019-1026.
  • Sirajunnisa, A. R., Vijayagopal, V., Sivaprakash, B., Viruthagiri, T., Surendhiran, D. (2016). Optimization, kinetics and antioxidant activity of exopolysaccharide produced from rhizosphere isolate, Pseudomonas fluorescens CrN6. Carbohydrate Polymers, 135, 35-43.
  • Swearingen, P. A., O'sullivan, D. J., Warthesen, J. J. (2001). Isolation, characterization, and influence of native, nonstarter lactic acid bacteria on Cheddar cheese quality. Journal of Dairy Science, 84(1), 50-59.
  • Taylan, O., Yilmaz, M. T., Dertli, E. (2019). Partial characterization of a levan type exopolysaccharide (EPS) produced by Leuconostoc mesenteroides showing immunostimulatory and antioxidant activities. International Journal of Biological Macromolecules, 136, 436-444.
  • Trabelsi, I., Ktari, N., Slima, S. B., Triki, M., Bardaa, S., Mnif, H., Salah, R. B. (2017). Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp. Ca6. International Journal of Biological Macromolecules, 103, 194-201.
  • Veljovic, K., Terzic‐Vidojevic, A., Vukasinovic, M., Strahinic, I., Begovic, J., Lozo, J., Topisirovic, L. (2007). Preliminary characterization of lactic acid bacteria isolated from Zlatar cheese. Journal of Applied Microbiology, 103(6), 2142-2152.
  • Yildiz, H., and Karatas, N. (2018). Microbial exopolysaccharides: Resources and bioactive properties. Process Biochemistry, 72, 41-46.
  • Wang, J., Zhao, X., Yang, Y., Zhao, A., Yang, Z. (2015). Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International Journal of Biological Macromolecules, 74, 119-126.
  • Wang, K., Li, W., Rui, X., Chen, X., Jiang, M., Dong, M. (2014). Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. International Journal of Biological Macromolecules, 63, 133-139.
  • Wang, Y., Li, C., Liu, P., Ahmed, Z., Xiao, P., Bai, X. (2010). Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohydrate Polymers, 82(3), 895-903.
  • Wood, B. J. B. (1997). Microbiology of fermented foods. London: Blackie Academic & Professional.
  • Wood, B. J. B. And Holzapfel, W. H. (1995). The genera of lactic acid bacteria. London: Blackie Academic & Professional.
  • Xu, Y., Cui, Y., Wang, X., Yue, F., Shan, Y., Liu, B., Zhou, Y., Yanglei, Y., Lü, X. (2019). Purification, characterization and bioactivity of exopolysaccharides produced by Lactobacillus plantarum KX041. International Journal of Biological Macromolecules, 128:480-492.
  • Zhang, L., Liu, C., Li, D., Zhao, Y., Zhang, X., Zeng, X., Li, S. (2013). Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. International Journal of Biological Macromolecules, 54, 270-275.
  • Zhou, Y., Cui, Y., Qu, X. (2019). Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydrate polymers, 207, 317-332.
There are 50 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Mustafa Şengül 0000-0003-0334-5621

Halil İbrahim Akgül 0000-0002-8116-1484

Enes Dertli 0000-0002-0421-6103

Özlem Çakır 0000-0002-5080-7721

Project Number FBA-2019-6985
Publication Date July 31, 2022
Submission Date May 12, 2022
Published in Issue Year 2022 Volume: 1 Issue: 2 (Temmuz)

Cite

APA Şengül, M., Akgül, H. İ., Dertli, E., Çakır, Ö. (2022). Partial characterization and antioxidant activity of exopolysaccharides produced by lactic acid bacteria isolated from “Çökelek” a traditional cheese in Türkiye. ATA-Gıda Dergisi, 1(2 (Temmuz), 1-8.