Review
BibTex RIS Cite

Katı-Sıvı Ekstraksiyonunda Kullanılan Modern Teknikler ve Bu Teknikler Arasında Ultrason Yardımlı Ekstraksiyonun Yeri

Year 2019, Volume: 50 Issue: 2, 201 - 216, 28.05.2019
https://doi.org/10.17097/ataunizfd.466649

Abstract

Son yıllarda biyomoleküller nutrasötik potansiyelleri
nedeniyle ilgi çekmekte ve bu bileşenlerin çeşitli doğal kaynaklardan
ektraksiyonunda kullanılan tekniklerin geliştirilmesi yönünde yapılan
çalışmalar artmaktadır. Bitki hücre duvarında bulunan hemiselüloz, nişasta ve
pektin gibi polisakkaritlerin varlığı klasik ekstraksiyon tekniklerinin
etkinliğini azaltmaktadır. Ayrıca klasik teknikler; uzun ekstraksiyon süreleri,
fazla miktarda çözgen ihtiyacı, düşük ekstraksiyon seçiciliği, yüksek maliyet
ve fazla miktarlarda çözgenin buharlaştırılma zorunluluğu gibi olumsuz yönlere de
sahiptir. Bu nedenle, biyomoleküllerin
etkin şekilde kazanımı için yeşil ve yeni
ekstraksiyon tekniklerinin geliştirilmesine ihtiyaç vardır. Günümüzde yaygın
olarak kullanılan ultrason uygulaması ile oluşan mikron ebatındaki oyukcuklar
hücre duvarında bozunmaya ve parçacık boyutlarında küçülmeye neden olmakta ve
böylece kütle transferini hızlandırarak ekstraksiyon oranlarının artmasını
sağlamaktadır. Ultrason yardımlı ekstraksiyon, işlem süresini kısalmakla
birlikte daha yüksek saflıkta ürün eldesi sağlamakta, enerji sarfiyatını
azaltmakta ve daha az çözgen kullanımı ile çevreci bir teknoloji olarak
karşımıza çıkmaktadır.
Bu
derlemede modern ekstraksiyon teknikleri bütünsel bir bakış açısı ile ele
alınmakta ve bu teknikler içerinde ultrason yardımlı ekstraksiyonun yeri
detaylı olarak ifade edilmektedir.

References

  • Ade-Omowaye, B.I.O., Angersbach, A., Taiwo, K.A., Knorr, D., 2001. Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant based foods. Trends In Food Science And Technology, 12 (8):285–295.
  • Alupului, A., 2012. Microwave extraction of active principles from medicinal plants. U.P.B. Science Bulletin, Series B 74(2).
  • Angersbach, A., Heinz, V., Knorr, D., 2000. effects of pulsed electric fields on cell membranes in real food systems. Innovative Food Science And Emerging Technologies 1 (2): 135–149.
  • Asghari, J., Ondruschka, B., Mazaheritehrani, M., 2011. Extraction of bioactive chemical compounds from the medicinal asian plants by microwave irradiation. Journal of Medicinal Plants Research, 5 (4): 495–506.
  • Ashokkumar, M., 2011. The characterization of acoustic cavitation bubbles – an overview, Ultrasonic Sonochemistry, 18: 864–872.
  • Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N. And Omar, A. K. M., 2013. Techniques for extraction of bioactive compounds from plant materials: A Review. J. Food Eng., 117 (4):426–436.
  • Barbero, G.F., Liazid, A., Palma, M., Barroso, C.G., 2008. Ultrasound-assisted extraction of capsaicinoids from peppers. Talanta, 75:1332–1337.Barsotti, L., Cheftel, J.C., 1998. traitement des aliments par champs electriques pulses. Science Des Aliments, 18:584–601.
  • Benkerrou, F., Bey, M.B., Amrane, M., Louaileche, H., 2018. Ultrasonic-assisted extraction of total phenolic contents from Phoenix dactylifera and evaluation of antioxidant activity: statistical optimization of extraction process parameters. Journal of Food Measurement And Characterızatıon,12: (3)1910-1916. DOI: 10.1007/s11694-018-9805-5
  • Bermúdez-Aguirre, D., Mobbs, T., Barbosa-Cánovas, G., 2011. Ultrasound applications in food processing, In: H. Feng, G. Barbosa-Canovas, J. Weiss (Eds.), Ultrasound technologies for food and bioprocessing, Springer, New York, USA, 65–105.
  • Bhattacharjee, P., Singhal, R.S., Tiwari, S.R., 2006. Supercritical carbon dioxide extraction of cottonseed oil. Journal of Food Engineering, 79 (3): 892–989.Biesaga, M., 2011. Influence of extraction methods on stability of flavonoids. Journal of Chromatography A, 1218(18): 2505-12.
  • Bocevska, M., Sovov´A, H., 2007. Supercritical CO2 extraction of essential oil from yarrow, Journal of Supercritical Fluids, 40:360–367.
  • Caldeira, I., Pereira, R., Clı́maco, M.C., Belchior, A., Bruno De Sousa, R., 2004. Improved method for extraction of aroma compounds in aged brandies and aqueous alcoholic wood extracts using ultrasound. Analytica Chimica Acta, 513: 125–134.
  • Caleja, C., Barros, L., Prieto, M. A., Barreiro, M.F., Oliveira, M.B.P.P., Ferreira, I.C.F.R., 2017. extraction of rosmarinic acid from Melissa officinalis l. by heat-, microwave- and ultrasound-assistedextraction techniques: A comparative study through response surface analysis. Separatıon and Purificatıon Technology, 186: 297-308.Canales, R., Guiñez, M., Bazán, C., Reta, M., Cerutti,S., 2017. determining heterocyclic aromatic amines in aqueous samples: a novel dispersive liquid-liquid micro-extraction method based on solidification of floating organic drop and ultrasound assisted back extraction followed by UPLC-MS/MS. Talanta, 174: 548-555.
  • Capelo-Martıńez, J.L., Ximénez-Embún, P., Madrid, Y., Cámara, C., 2004. Advanced oxidation processes for sample treatment in atomic spectrometry. TrAC, Trends Anal. Chem. 23: 331–340.
  • Capelo-Martínez, J.L., 2009. Ultrasound in Chemistry: Analytical Applications, JohnWiley & Sons.
  • Carrilloa, A. N., Aguilar-Santamaría, M.A., Vernon-Carter, E.J., Jiménez-Alvaradod, R., Cruz-Sosaa, F., Román-Guerrero, A., 2017. Extraction of phenolic compounds from Satureja macrostema using microwave-ultrasound assisted and reflux methods and evaluation of their antioxidant activity and cytotoxicity. Industrial Crops and Products, 103: 213–221.
  • Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., Abert-Vian, M., 2017. Ultrasound assisted extraction of food and natural products. mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34: 540–560.
  • Chemat, F., Zill-E-Huma, Khan, M. K., 2011. Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4): 813-835.
  • Chen, F., Sun, Y., Zhao, G., Liao, X., Hu, X., Wu, J., Wang, Z., 2007. Optimization of ultrasound-assisted extraction of anthocyanins in red raspberries and identification of anthocyanins ın extract using high-performance liquid chromatography-mass spectrometry. Ultrason. Sonochem., 14:767–778.
  • Chen,S., Zeng,Z., Hu, N., Bai,B., Wang, H., Suo, Y., 2018. simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity Oflycium ruthenicum Murr. Fruit Using Response Surface Methodology. Food Chemistry, 242: 1-8.
  • Chukwumah, Y.C., Walker, L.T., Verghese, M., Ogutu, S., 2009. Effect of frequency and duration of ultrasonication on the extraction efficiency of selected isoflavones and trans-resveratrol from peanuts (Arachis hypogaea). Ultrasonic Sonochemistry, 16: 293-299.
  • Cocero, M.J., Gonzalez, S., Perez, S., Alonso, E., 2000. Supercritical extraction of unsaturated products: degradation of beta carotene supercritical extraction processes, Journal of Supercritical Fluids, 19: 39-44.
  • Concha, J., Soto, C., Chamy, R., Zuniga, M.E., 2004. Enzymatic pretreatment on rosehip oil extraction: hydrolysis and pressing conditions. Journal of American Oil Chemist’s Society, 81 (6): 549–552.
  • Corbin, C., Fidel, T., Leclerc, E.A., Barakzoy, E., Sagot, N., Falguieres, A., Renouard, S., Blondeau, J.P., Ferroud, C., Doussot, J., Laine, E., Hano, C., 2015. Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum Usitatissimum L.) seeds. Ultrasonic Sonochemistry, 26: 176- 185.
  • Corralesa, M., Toepflb, S., Butza, P., Knorrc, D., Tauschera, B., 2008. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innovative Food Science And Emerging Technologies, 9 (1): 85–91.
  • Cravottoa, G., Boffaa, L., Mantegnaa, S., Peregob, P., Avogadrob, M., Cintasc, P., 2008. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrasonics Sonochemistry, 15 (5): 898–902.
  • Dabre, R., Azad, N., Schwämmle, A., Lämmerhofer, M., Lindner, W., 2011. Simultaneous separation and analysis of water-and fat-soluble vitamins on multi-modal reversed-phase weak anion exchange material by HPLC-UV. J. Sep. Sci. 34:761–772.
  • D'alessandro, L.G., Dimitrov, K., 2014. Kinetics of ultrasound assisted extraction of anthocyanins from Aronia melanocarpa (Black chokeberry) wastes. Chemical Engineering Research and Design, 92(10): 1818-1826.
  • Delsart, C., Ghidossi, R., Poupot, C., Cholet, C., Grimi, N., Vorobiev, E., Milisic, V., Peuchot, M.M., 2012. Enhanced extraction of phenolic compounds from merlot grapes by pulsed electric field treatment. American Journal of Enology and Viticulture, 63 (2): 205–211.
  • Demir, E, Serdar, G., Sökmen, M., 2015. Comparison of some extraction methods for ısolation of catechins and caffeine from turkish green tea. International Journal of Secondary Metabolite, 2(2): 16-25.
  • Dhobi, M., Mandal, V., Hemalatha, S., 2009. Optimization Of Microwave Assisted Extraction Of Bioactive Flavolignan–Silybinin. Journal Of Chemical Metrology, 3 (1):13–23.
  • Dominguez, H., Ntiiiez, M.J., Lema, J.M., 1995. Enzyme-assisted hexane extraction of soybean oil. Food Chemistry, 54 (2): 223–231.
  • EPA, 2017. http://www.epa.gov/greenchemistry/pubs/about_gc.html. Erişim: Aralık 2017.
  • Erdogan, S., Ates, B., Durmaz, G., Yilmaz, I., Seckin, T., 2011. Pressurized liquid extraction of phenolic compounds from anatolia propolis and their radical scavenging capacities. Food And Chemical Toxicology, 49 (7):1592–1597.
  • Esclapez, M.D., García-Pérez, J.V., Mulet, A., Cárcel, J.A., 2011. Ultrasound-assisted extraction of natural products, Food Engineering Reviews, 3:108–120.
  • Fincan, M., De Vito, F., Dejmek, P., 2004. Pulsed electric field treatment for solid– liquid extraction of red beetroot pigment. Journal of Food Engineering, 64 (3): 381–388.Fincan, M., Dejmek, P., 2002. In situ visualization of the effect of a pulsed electric field on plant tissue. Journal Of Food Engineering 55 (3): 223–230.
  • Flint E.B., Suslick K.S., 1991. The temperature of cavitation, Science, 253: 1397–1399.
  • Ghafoor, K., Park, J., Choi, Y.H., 2010. Optimization of supercritical carbon dioxide extraction of bioactive compounds from grape peel (Vitis labrusca B.) by using response surface methodology. Innovative Food Science And Emerging Technologies, 11 (3): 485–490.
  • Gliszczy ´nska-Swigło, A.; Rybicka, I., 2015. Simultaneous determination of caffeine and water-soluble vitamins ´ in energy drinks by HPLC with photodiode array and fluorescence detection. Food Anal. Methods, 8: 139–146.
  • Gómez-García, R., Martínez-Ávila, G.C.G., Aguilar, C.N., 2012. Enzyme-assisted extraction of antioxidative phenolics from grape (Vitis vinifera L.) residues. 3 Biotech., 2(4):297-300.
  • González-Centeno M.R., Knoerzer K., Sabarez H., Simal S., Rosselló C., Femenia A. 2014. effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) – A Response Surface Approach, Ultrason. Sonochem. 21: 2176–2184.
  • Guderjan, M., Töpfl, S., Angersbach, A., Knorr, D. 2005. Impact of pulsed electric field treatment on the recovery and quality of plant oils. Journal of food engineering, 67 (3): 281–287.
  • Hammi, K.M., Jdey, A., Abdelly, C., Majdoub, H., Ksouri, R., 2015. Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus Fruits using response surface methodology. Food Chemistry, 184: 80-89.
  • Handa, S.S, Khanuja, S.P.S., Longo, G., Rakesh, D.D., 2008. Extraction technologies for medicinal and aromatic plants. united nations ındustrial development organization and the ınternational centre for science and high technology. Icsunıdo Is Supported By The Italian Ministry Of Foreign Affairs, 35-51.
  • Hanmoungjai, P., Pyle, D.L., Niranjan, K., 2001. Enzymatic process for extracting oil and protein from rice bran. Journal of The American Oil Chemists Society, 78 (8): 817–821.
  • Heinz, V., Toepfl, S., Knorr, D., 2003. Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment. Innovative Food Science and Emerging Technologies 4 (2):167–175.
  • Herrera, M.C., Luque De Castro, M.D., 2004. Ultrasound-assisted extraction for the analysis of phenolic compounds in strawberries. Analytical and Bioanalytical Chemistry, 379 (7–8): 1106–1112.
  • Hossain, M.B., Brunton, N.P., Patras, A., Tiwari, B., O’donnell, C.P., Martindiana, A.B., Barry-Ryan, C., 2012. Optimization of ultrasound assisted extraction of antioxidant compounds from Marjoram (Origanum majorana L.) using response surface methodology. Ultrasonic Sonochemistry, 19 (3): 582–590.
  • Ibañez, E., Herrero, M., Mendiola, J.A., Castro-Puyana, M., 2012. Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria, and invertebrates. In: Hayes, M. (Ed.), Marine Bioactive Compounds: Sources, Characterization And Applications. Springer, Pp. 55–98.
  • Ilbay, Z., 2016. Turunçgil Meyve Ve Yapraklarının Farklı Ekstraksiyon Yöntemleriyle Ekstraksiyonu Ve Matematik Modellemesi. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, Temel İşlemler ve Termodinamik Bilim Dalı. 168. Doktora Tezi.
  • Inczedy, J., Lengyel, T., Ure, A.M., 1998. Supercritical fluid chromatography and extraction. compendium of analytical nomenclature (Definitive Rules 1997), Third Ed. Blackwell Science.
  • İçen, H.,Gürü, M., 2010. Effect of ethanol content on supercritical carbon dioxide extraction of caffeine from tea stalk and fiber wastes. Journal of Supercritical Fluids, 55(1): 156-160.
  • Jadhav, D., Rekha, B.N., Parag, R.G., Virendra, K.R., 2009. Extraction of vanillin from vanilla pods: a comparison study of conventional soxhlet and ultrasound assisted extraction. Journal of Food Engineering, 93: 421–426.
  • Jain, T., 2009. Microwave assisted extraction for phytoconstituents – An Overview. Asian Journal Of Research In Chemistry, 2 (1): 19–25.
  • Joaquín-Cruz, E., Dueñas, M., García-Cruz, L., Salinas-Moreno, Y., Santos-Buelga,C., García-Salinas, C., 2015. Anthocyanin and phenolic characterization, chemical composition and antioxidant activity of Chagalapoli (Ardisia compressak.) Fruit: A tropical source of natural pigments. Food Research International, 70: 151-157.
  • Kek, S., Chin, N., Yusof, Y., 2013. Direct and indirect power ultrasound assisted pre-osmotictreatments in convective drying of guava slices. Food Bioprod. Process., 91: 495–506.
  • Kurek, M.A., Karp, S., Wyrwisz, J., Niu, Y.G., 2018. Physicochemical properties of dietary fibers extracted from gluten-free sources: quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and millet (Panicum miliaceum). Food Hydrocolloids, 85:321-330.
  • Lang, Q., Wai, C.M., 2001. Supercritical fluid extraction in herbal and natural product studies a practical review. Talanta, 53 (4): 771–782.
  • Laroze, L., Soto, C., Zúñiga, M.E., 2010. Phenolic antioxidants extraction from raspberry wastes assisted by-enzymes. Electronic Journal of Biotechnology, 13 (6): 1-11.
  • Latif, S., Anwar, F., 2009. Physicochemical studies of hemp (cannabis sativa) seed oil using enzyme-assisted cold-pressing. European Journal Of Lipid Science And Technology, 111 (10): 1042–1048.
  • Lebovka, N.I., Bazhal, M.I., Vorobiev, E., 2002. Estimation of characteristic damage time of food materials in pulsed-electric fields. Journal Of Food Engineering, 54 (4): 337–346.
  • Legay, M., Gondrexon, N., Le Person, S., Boldo, P., Bontemps, A., 2011. Enhancement of heat transfer by ultrasound: review and recent advances, Int. J. Chem. Eng. Leong T., Ashokkumar M. S., 2011. Kentish, The fundamentals of power ultrasound: A Review, Acoust. Aust., 39: 54–63.
  • Letellier, M., Budzinski, H., 1999. Microwave assisted extraction of organic compounds. Analusis, 27 (3): 259–270.
  • Li, H., Chen, B., Yao, S., 2005. Application of ultrasonic technique for extracting chlorogenic acid from Eucommia ulmodies Oliv. (E. Ulmodies). Ultrasonics Sonochemistry, 12 (4): 295–300.
  • Li, H., Pordesimo, L., Weiss, J., 2004. high intensity ultrasound-assisted extraction of oil from soybeans, Food Research International, 37: 731–738.López, N., Puértolas, E., Condón, S., Raso, J., Álvarez, I., 2009. Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. Journal of Food Engineering, 90 (1): 60–66.
  • Luthria, D.L., 2008. Influence of experimental conditions on the extraction of phenolic compounds from parsley (Petroselinum crispum) flakes using a pressurized liquid extractor. Food Chemistry, 107 (2): 745–752.
  • Ma, Y. Q., Chen, J. C., Liu, D. H., Ye, X. Q., 2009. Simultaneous extraction of phenolic compounds of citrus peel extracts, effect of ultrasound. Ultrasonics Sonochemistry, 16: 57–62.
  • Ma, Y., Ye, X., Hao, Y., Xu, G., Xu, G., Liu, D., 2008. Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel, Ultrasonic Sonochemistry, 15 (3): 227–232.
  • Machado, A.P.F, Pereira A., Barbero, G.F., Martínez, J., 2017. recovery of anthocyanins from residues of Rubus fruticosus, Vaccinium myrtillus and Eugenia brasiliensis by ultrasoundassisted extraction, pressurized liquid extraction and their combination. Food Chemistry, 231: 1-10.
  • Mackersie, J.W., Timoshkin, I.V., MacGregor, S.J. , 2005. Generation of high-power ultrasound by spark discharges in water. IEEE Trans. Plasma Sci., 33 (5): 1715-1724.
  • Maier, T., Göppert, A., Kammerer, D.R., Schieber, A., Carle, R., 2008. Optimization of a process for enzyme-assisted pigment extraction from grape (Vitis vinifera L.) pomace. European Food Research And Technology, 227 (1): 267–275.
  • Margulis, M.A., Margulis, I.M., 2003. Calorimetric method for measurement of acoustic power absorbed ın a volume of a liquid. Ultrasonic Sonochemistry, 10: 343–345.
  • Márquez-Sillero, I.; Cárdenas, S.; Valcárcel, M. 2013. Determination of water-soluble vitamins in infant milk and dietary supplement using a liquid chromatography on-line coupled to a corona-charged aerosol detector. J. Chromatogr. A, 1313: 253–258.
  • Mason, T.J., 1990. Chemistry With Ultrasound, Elsevier Applied Science, New York.
  • Mason, T.J., Cobley, A.J., Graves, J.E., Morgan, D., 2011. New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound, Ultrasonic Sonochemistry, 18: 226–230.
  • Mason, T.J., Lorimer, J.P., 2002. General principles, In: T.J. Mason, J.P. Lorimer (Eds.), Applied Sonochemistry: Uses of power ultrasound in chemistry and processing, Wiley-Vch Verlag, Germany, Pp. 25–74.
  • Mroczek, T., Mazurek, J., 2009. Pressurized liquid extraction and anticholinesterase activity-based thin-layer chromatography with bioautography of amaryllidaceae alkaloids. Analytica Chimica Acta, 633 (2):188–196.
  • Nieto, A., Borrull, F., Pocurull, E., Marcé, R.M., 2010. pressurized liquid extraction: a useful technique to extract pharmaceuticals and personal-care products from sewage sludge. Trac Trends İn Analytical Chemistry, 29 (7):752–764.
  • Nipornram, S., Tochampa, W., Rattanatraiwong, P., 2018. Optimization of low power ultrasound-assisted extraction of phenolic compounds from Mandarin (Citrus Reticulata Blanco Cv. Sainampueng) peel. Food Chemistry, 241: 338-345.
  • Niranjan, K., Hanmoungjai, P., 2004. Enzyme-aided aquous extraction. In: Dunford, N.T., Dunford, H.B. (Eds.), Nutritionally Enhanced Edible Oil Processing. Aocs Publishing.
  • Palma, M., Barbero, G.F., Pineiro, Z., Liazid, A., Barroso, C.G., Rostagno, M.A., Prado, J.M., Meireles, M.A.A., 2013. Chapter 2: Extraction of natural products: Principles and fundamental aspects, In: M.A. Rostagno, J.M. Prado (Eds.), Natural Product Extraction: Principles and applications, The Royal Society of Chemistry, Uk, Pp. 58–88.
  • Palma, M., Barroso, C.G., 2002. Ultrasound-assisted extraction and determination of tartaric and malic acids from grapes and winemaking by-products. Analytica Chimica Acta, 458: 119-130.
  • Pan, X., Niu, G., Liu, H., 2003. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering And Processing, 42 (2): 129–133.
  • Pétrier, C., Gondrexon, N., Boldo, P., 2008. ultrasons et sonochimie, techniques de l’ingénieur chimie verte: optimisation des modes de séparation. D’activation Et De Synthèse Base Documentaire: Tıb493duo.
  • Pingret, D., Fabiano-Tixier, A. S., Chemat, F., 2013. Chapter 3: Ultrasound-Assisted Extraction, In: M.A. Rostagno, J.M. Prado (Eds.), Natural product extraction: Principles and applications, The Royal Society of Chemistry, Uk, 2013, Pp. 89– 112.
  • Ponmurugan, K., Al-Dhabi N.A., Maran, J.P., Karthikeyan, K., Moothy, I.G., Sivarajasekar, N., Manoj, J.J.B., 2017. Ultrasound assisted pectic polysaccharide extraction and its characterization from waste heads of Helianthus annus. Carbohydrate Polymers, 173: 707-713.
  • Poongothai, S., Ilavarasan, R., Karrunakaran, C.M., 2010. Simultaneous and accurate determination of vitamins B1, B6, B12 and alpha-lipoic acid in multivitamin capsule by reverse-phase high performance liquid chromatographic method. Int. J. Pharm. Pharm. Sci., 2: 133–139.
  • Puértolas, E., López, N., Saldaña, G., Álvarez, I., Raso, J., 2010. Evaluation of phenolic extraction during fermentation of red grapes treated by a continuous pulsed electric fields process at pilot-plant scale. Journal Of Food Engineering, 119 (3): 1063–1070.
  • Puri, M., Sharma, D., Barrow, C.J., 2012. Enzyme-assisted extraction of bioactives from plants. Trends In Biotechnology, 30 (1): 37–44.
  • Richter, B.E., Jones, B.A., Ezzell, J.L., Porter, N.L., Avdalovic, N., Pohl, C., 1996. Accelerated solvent extraction: a technology for sample preparation. Analytical Chemistry, 68 (6): 1033–1039.
  • Rosenthal, A., Pyle, D.L., Niranjan, K., 1996. Aqueous and enzymatic processes for edible oil extraction. Enzyme Microbial Technology, 19 (6): 402–420.
  • Rosenthal, A., Pyle, D.L., Niranjan, K., Gilmour, S., Trinca, L., 2001. Combined effect of operational variables and enzyme activity on aqueous enzymatic extraction of oil and protein from soybean. Enzyme and Microbial Technology, 28 (6):499– 509.
  • Rostagno, M.A., Palma, M., Barroso, C.G., 2004. Pressurized liquid extraction of isoflavones from soybeans. Analytica Chimica Acta, 522 (2): 169–177.
  • Salar Bashi, D., Mortazavi, S. A., Rezaei, K., Rajaei, A., Karimkhani, M. M., 2012. Optimization of ultrasound-assisted extraction of phenolic compounds from Yarrow (Achillea beibrestinii) by response surface methodology. Food Science and Biotechnology, 21(4): 1005–1011.
  • Sališová, M., Toma, Š., Mason, T.J., 1997. Comparison of conventional and ultrasonically assisted extractions of pharmaceutically active compounds from Salvia officinalis, Ultrasonic Sonochemistry, 4:131–134.
  • Santos, D.C.M.B., Carvalho, L.S.B., Lima,D.C., Leão, D.J., Teixeira, L.S.G., Graças, M., 2017. Korndetermination of micronutrient minerals in coconut milk by ICP-OES after ultrasound-assisted extraction procedure. Journal Of Food Composition and Analysis, 34(1):75-80.
  • Santos, H.M., Capelo, J.L., 2007. Trends in ultrasonic-based equipment for analytical sample treatment. Talanta, 73: 795–802.
  • Santos, H.M., Lodeiro, C., Capelo-Martínez, J.L., 2009. The power of ultrasound, In: Capelo-Martínez J. L. (Ed.), Ultrasound in chemistry: Analytical applications, Wiley-Vch Verlag, Germany, Pp. 1–16.
  • Sharma, A., Khare, S.K., Gupta, M.N., 2002. Enzyme-assisted aqueous extraction of peanut oil. Journal of American Oil Chemist’s Society, 79 (3): 215–218.
  • Shen, J., Shao, X., 2005. A comparison of accelerated solvent extraction, soxhlet extraction, and ultrasonic-assisted extraction for analysis of terpenoids and sterols in tobacco. Analytical And Bioanalytical Chemistry, 383 (6): 1003–1008.
  • Shen,Y., Zhang,X., Prinyawiwatkul, W., Xu, Z., 2014. Simultaneous determination of red and yellow artificial food colourants and carotenoid pigments in food products. Food Chemistry, 157: 553-558.
  • Shirsath, S.R., Sonawane, S.H., Gogate, P.R., 2012. Intensification of extraction of natural products using ultrasonic irradiations – a review of current status. Chemistry of Engineering Process, 53: 10–23.
  • Sihvonen, M., Järvenpää, E., Hietaniemi, V., Huopalahti, R., 1999. Advances in supercritical carbon dioxide technologies. Trends in Food Science and Technology, 10 (6–7): 217–222.
  • Singh, R.K., Sarker, B.C., Kumbhar, B.K., Agrawal, Y.C., Kulshreshtha, M.K., 1999. Response surface analysis of enzyme-assisted oil extraction factors for sesame, groundnut, and sunflower seeds. Journal of Food Science and Technology, 36 (6): 511–514.
  • Sivakumar, V., Lakshmi, A. J., Vijayeeswaree, J., Swaminathan, G., 2009. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrasonics Sonochemistry, 16: 782–789.
  • Sun, Y., Liu, D., Chen, J., Ye, X., Yu, D., 2011. Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-b-carotene from citrus peels. Ultrasonic Sonochemistry, 18:243–249.
  • Suslick K.S., 1989. The chemical effects of ultrasound, Sci. Am. 260: 80–86.
  • Suslick, K.S., Didenko, Y., Fang, M.M., Hyeon, T., Kolbeck, K.J., Mcnamara, W.B., Mdleleni, M. M., Wong, M., 1999. Acoustic cavitation and its chemical consequences. Philosophical Transactions of the Royal Society of London, Ser. A, 357:335–353.
  • Suslick, K.S., Eddingsaas, N.C., Flannigan, D.J., Hopkins, S.D., Xu, H., 2011. Extreme conditions during multibubble cavitation: sonoluminescence as a spectroscopic probe. Ultrasonic Sonochemistry, 18: 842–846.
  • Temelli, F., Güçlü-Üstündag, Ö., 2005. Supercritical technologies for further processing of edible oils. Bailey’s Industrial Oil And Fat Products. John Wiley & Sons, Inc. Tiwari, B.K., 2015. Ultrasound: a clean, green extraction technology, TrAC Trends in Analytical Chemistry, 71: 100–109.
  • Toepfl, S., Mathys, A., Heinz, V., Knorr, D., 2006. Review: potential of high hydrostatic pressure and pulsed electric fields for energy efficiency and environmentally friendly food processing. Food Review International, 22 (4): 405–423.
  • Toma, M., Vinatoru, M., Paniwnyk, L., Mason, T.J., 2001. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrasonic Sonochemistry, 8: 137–142.
  • Velickovic, V., Durovic, S, Radojkovic, M., 2017. Application of conventional and non-conventional extraction approaches for extraction of Erica carnea L.: Chemical profile and biological activity of obtained extracts. Journal of Supercrıtıcal Fluıds, 128: 331-337.
  • Vilkhu, K., Manasseh, R., Mawson, R., Ashokkumar, M., 2011. Ultrasonic recovery and modification of food ingredients, In: H. Feng, G. Barbosa-Canovas, J. Weiss (Eds.), Ultrasound technologies for food and bioprocessing, Springer, New York, Usa, Pp. 345–368.
  • Vilkhu, K., Mawson, R., Simons, L., Bates, D., 2008. Applications and opportunities for ultrasound assisted extraction in the food industry – a review. Innovative Food Science Emerging Technology, 9:161–169.
  • Vinatoru, M. 2015. Ultrasonically assisted extraction (UAE) of natural products some guidelines for good practice and reporting, Ultrason. Sonochem., 25: 94–95. Vinatoru, M., 2001. An overview of ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonic Sonochemistry, 8:303–313.
  • Vinatoru, M., Mason, T.J., Calinescu, I., 2017. Ultrasonically assisted extraction (uae) and microwave assisted extraction (mae) of functional compounds from plant materials. Trends İn Analytical Chemistry, 97:159-178.
  • Virot, M., Tomao, V., Le Bourvellec, C., Renard, M.C.G.C., Chemat F., 2010. Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrasonics Sonochemistry, 17: 1066-1074.
  • Vorobiev, E., Jemai, A.B., Bouzrara, H., Lebovka, N.I., Bazhal, M.I., 2005. Pulsed electric field assisted extraction of juice from food plants. In: Barbosa-Canovas, G., Tapia, M.S., Cano, M.P. (Eds.), Novel Food Processing Technologies. Crc Press, New York, Pp. 105–130.
  • Vorobiev, E., Lebovka, N.I., 2006. Extraction of intercellular components by pulsed electric fields. In: Raso, J., Heinz, V. (Eds.), Pulsed Electric Field Technology For The Food Industry: Fundamentals And Applications. Springer, New York, Pp. 153–194.
  • Wang, L., Weller, C.L., 2006. Recent advances in extraction of nutraceuticals from plants. Trends İn Food Science & Technology, 17 (6): 300–312.
  • Wang, W., Chen, W.,Zou,M., Lv,R., Wang,D., Hou,F., Feng,H., Maa, X., Zhong, J., Tian D., Ye,X., Liu, D., 2018. Applications of power ultrasound in oriented modification and degradation of pectin: A review. Journal of Food Engineering, 234:98-107.
  • Wang, W., Ma, X., Xu, Y., Cao, Y., Jiang, Z., Ding, T., Ye, X., Liu, F.X., 2015. Ultrasound assisted extraction of peçtin from grapefruit peel: optimization and comparison with the conventional method. Food Chemistry, 178:106-114.
  • Wibetoe, G., Takuwa, D.T., Lund, W., Sawula, G., 1999. Coulter particle analysis used forstudying the effect of sample treatment in slurry sampling electrothermal atomicabsorption spectrometry. Fresenius' J. Anal. Chem., 363: 46–54.
  • Xia, T., Shi, S., Wan, X., 2006. Impact of ultrasonic-assisted extraction on the chemical and sensory quality of tea infusion. Journal of Food Engineering, 74: 557–560.
  • Xu, D.P., Zheng, J., Zhou, Y., Li, Y., Li,S., Li, H.B., 2017. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and Comparison with Conventional Methods Food Chemistry, 217: 552-559.
  • Xu, X., Dong, J., Mu, X., Sun, L., 2011. Supercritical CO2 extraction of oil, carotenoids, squalene and sterols from lotus (Nelumbo nucifera gaertn) bee pollen, Food And Bioproducts Processing, 89: 47–52.
  • Yang, X., Li, Y., Li, S., Oladejo, A.O., Wang,Y., Huang, S., Zhou, C., Ye, X., Ma, H., Duan, Y., 2018. Effects of ultrasound-assisted α-amylase degradation treatment with multiple modes on the extraction of rice protein. Ultrasonics Sonochemistry, 40: 890-899.
  • Yang, Y., Zhang, F., 2008. Ultrasound-assisted extraction of rutin and quercetin from Euonymus alatus (Thunb.) Sieb. Ultrasonics Sonochemistry, 15 (4): 308–313.Zhang H.F., Yang X.H., Zhao L.D., Wang, Y., 2009a. Ultrasonic-assisted extraction of epimedin c from fresh leaves of Epimedium and extraction mechanism. Innovative Food Science Emerging Technology, 10:54–60.
  • Zhang Q.A., Zhang Z.Q., Yue X.F., Fan X.H., Li T., Chen S.F., 2009b. Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder, Food Chemistry, 116:513–518.
  • Zhang Z.S., Wang L.J., Li, D., Jiao, S.S., Chen, X.D., Mao Z.H., 2008. Ultrasound assisted extraction of oil from flaxseed. Seperation and Purification Technology, 62: 192– 198.
  • Zhang, Q.A., Wang, T.T., 2017. effect of ultrasound irradiation on the evolution of color properties and major phenolic compounds in wine during storage. Food Chemistry, 234: 372-380.
  • Zhao, L.I., Zhao, G., Chen, F., Wang, Z., Wu, J., Hu, X., 2006. Different effects of microwave and ultrasound on the stability of (all-e)-astaxanthin. Journal of Agricultural Food Chemistry, 54(21): 8346-51.
  • Zhu, Z., Wu, Q., Di, X., Li, S., Barba, F.J., Koubaa, M., Roohinejad,S., Xiong,X., He,J., 2017. Multistage recovery process of seaweed pigments: ınvestigation of ultrasound assisted extraction and ultra-filtration performances. Food and Bioproducts Processing, 104: 40-47.

Modern Techniques Used in Solid-Liquid Extraction and the Place of Ultrasound Assisted Extraction Among These Techniques

Year 2019, Volume: 50 Issue: 2, 201 - 216, 28.05.2019
https://doi.org/10.17097/ataunizfd.466649

Abstract

In
recent years, biomolecules have attracted attention due to their nutraceutical
potentials and studies on development of techniques for the extraction of these
components from various natural sources are increasing. The presence of
polysaccharides such as hemicelluloses, starch, pectin inside the plant cell
wall, reduces the extraction efficiency of conventional extraction techniques.
Also, conventional techniques has negative aspects namely,
  long extraction times, large amount of
solvent, low extraction selectivity, high cost and the necessity of solvent
evaporation in excess amounts. Therefore, there is a need for the development of
green and new extraction techniques for the efficient recovery of biomolecules.
By ultrasound application which is a modern extraction technique, micron sized
cavites cause degradation in the cell wall and a decrease in particle size and
so it accelerates mass transfer and increase the extraction rates. Ultrasonic
extraction shortens the processing time and provides a higher product purity,
reduces energy consumption and results in an environmentally friendly
technology with less solvent usage. In this review, modern extraction
techniques are considered from a holistic point of view and the location of the
ultrasonic extraction among these techniques is expressed in detail.

References

  • Ade-Omowaye, B.I.O., Angersbach, A., Taiwo, K.A., Knorr, D., 2001. Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant based foods. Trends In Food Science And Technology, 12 (8):285–295.
  • Alupului, A., 2012. Microwave extraction of active principles from medicinal plants. U.P.B. Science Bulletin, Series B 74(2).
  • Angersbach, A., Heinz, V., Knorr, D., 2000. effects of pulsed electric fields on cell membranes in real food systems. Innovative Food Science And Emerging Technologies 1 (2): 135–149.
  • Asghari, J., Ondruschka, B., Mazaheritehrani, M., 2011. Extraction of bioactive chemical compounds from the medicinal asian plants by microwave irradiation. Journal of Medicinal Plants Research, 5 (4): 495–506.
  • Ashokkumar, M., 2011. The characterization of acoustic cavitation bubbles – an overview, Ultrasonic Sonochemistry, 18: 864–872.
  • Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N. And Omar, A. K. M., 2013. Techniques for extraction of bioactive compounds from plant materials: A Review. J. Food Eng., 117 (4):426–436.
  • Barbero, G.F., Liazid, A., Palma, M., Barroso, C.G., 2008. Ultrasound-assisted extraction of capsaicinoids from peppers. Talanta, 75:1332–1337.Barsotti, L., Cheftel, J.C., 1998. traitement des aliments par champs electriques pulses. Science Des Aliments, 18:584–601.
  • Benkerrou, F., Bey, M.B., Amrane, M., Louaileche, H., 2018. Ultrasonic-assisted extraction of total phenolic contents from Phoenix dactylifera and evaluation of antioxidant activity: statistical optimization of extraction process parameters. Journal of Food Measurement And Characterızatıon,12: (3)1910-1916. DOI: 10.1007/s11694-018-9805-5
  • Bermúdez-Aguirre, D., Mobbs, T., Barbosa-Cánovas, G., 2011. Ultrasound applications in food processing, In: H. Feng, G. Barbosa-Canovas, J. Weiss (Eds.), Ultrasound technologies for food and bioprocessing, Springer, New York, USA, 65–105.
  • Bhattacharjee, P., Singhal, R.S., Tiwari, S.R., 2006. Supercritical carbon dioxide extraction of cottonseed oil. Journal of Food Engineering, 79 (3): 892–989.Biesaga, M., 2011. Influence of extraction methods on stability of flavonoids. Journal of Chromatography A, 1218(18): 2505-12.
  • Bocevska, M., Sovov´A, H., 2007. Supercritical CO2 extraction of essential oil from yarrow, Journal of Supercritical Fluids, 40:360–367.
  • Caldeira, I., Pereira, R., Clı́maco, M.C., Belchior, A., Bruno De Sousa, R., 2004. Improved method for extraction of aroma compounds in aged brandies and aqueous alcoholic wood extracts using ultrasound. Analytica Chimica Acta, 513: 125–134.
  • Caleja, C., Barros, L., Prieto, M. A., Barreiro, M.F., Oliveira, M.B.P.P., Ferreira, I.C.F.R., 2017. extraction of rosmarinic acid from Melissa officinalis l. by heat-, microwave- and ultrasound-assistedextraction techniques: A comparative study through response surface analysis. Separatıon and Purificatıon Technology, 186: 297-308.Canales, R., Guiñez, M., Bazán, C., Reta, M., Cerutti,S., 2017. determining heterocyclic aromatic amines in aqueous samples: a novel dispersive liquid-liquid micro-extraction method based on solidification of floating organic drop and ultrasound assisted back extraction followed by UPLC-MS/MS. Talanta, 174: 548-555.
  • Capelo-Martıńez, J.L., Ximénez-Embún, P., Madrid, Y., Cámara, C., 2004. Advanced oxidation processes for sample treatment in atomic spectrometry. TrAC, Trends Anal. Chem. 23: 331–340.
  • Capelo-Martínez, J.L., 2009. Ultrasound in Chemistry: Analytical Applications, JohnWiley & Sons.
  • Carrilloa, A. N., Aguilar-Santamaría, M.A., Vernon-Carter, E.J., Jiménez-Alvaradod, R., Cruz-Sosaa, F., Román-Guerrero, A., 2017. Extraction of phenolic compounds from Satureja macrostema using microwave-ultrasound assisted and reflux methods and evaluation of their antioxidant activity and cytotoxicity. Industrial Crops and Products, 103: 213–221.
  • Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., Abert-Vian, M., 2017. Ultrasound assisted extraction of food and natural products. mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34: 540–560.
  • Chemat, F., Zill-E-Huma, Khan, M. K., 2011. Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4): 813-835.
  • Chen, F., Sun, Y., Zhao, G., Liao, X., Hu, X., Wu, J., Wang, Z., 2007. Optimization of ultrasound-assisted extraction of anthocyanins in red raspberries and identification of anthocyanins ın extract using high-performance liquid chromatography-mass spectrometry. Ultrason. Sonochem., 14:767–778.
  • Chen,S., Zeng,Z., Hu, N., Bai,B., Wang, H., Suo, Y., 2018. simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity Oflycium ruthenicum Murr. Fruit Using Response Surface Methodology. Food Chemistry, 242: 1-8.
  • Chukwumah, Y.C., Walker, L.T., Verghese, M., Ogutu, S., 2009. Effect of frequency and duration of ultrasonication on the extraction efficiency of selected isoflavones and trans-resveratrol from peanuts (Arachis hypogaea). Ultrasonic Sonochemistry, 16: 293-299.
  • Cocero, M.J., Gonzalez, S., Perez, S., Alonso, E., 2000. Supercritical extraction of unsaturated products: degradation of beta carotene supercritical extraction processes, Journal of Supercritical Fluids, 19: 39-44.
  • Concha, J., Soto, C., Chamy, R., Zuniga, M.E., 2004. Enzymatic pretreatment on rosehip oil extraction: hydrolysis and pressing conditions. Journal of American Oil Chemist’s Society, 81 (6): 549–552.
  • Corbin, C., Fidel, T., Leclerc, E.A., Barakzoy, E., Sagot, N., Falguieres, A., Renouard, S., Blondeau, J.P., Ferroud, C., Doussot, J., Laine, E., Hano, C., 2015. Development and validation of an efficient ultrasound assisted extraction of phenolic compounds from flax (Linum Usitatissimum L.) seeds. Ultrasonic Sonochemistry, 26: 176- 185.
  • Corralesa, M., Toepflb, S., Butza, P., Knorrc, D., Tauschera, B., 2008. Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innovative Food Science And Emerging Technologies, 9 (1): 85–91.
  • Cravottoa, G., Boffaa, L., Mantegnaa, S., Peregob, P., Avogadrob, M., Cintasc, P., 2008. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrasonics Sonochemistry, 15 (5): 898–902.
  • Dabre, R., Azad, N., Schwämmle, A., Lämmerhofer, M., Lindner, W., 2011. Simultaneous separation and analysis of water-and fat-soluble vitamins on multi-modal reversed-phase weak anion exchange material by HPLC-UV. J. Sep. Sci. 34:761–772.
  • D'alessandro, L.G., Dimitrov, K., 2014. Kinetics of ultrasound assisted extraction of anthocyanins from Aronia melanocarpa (Black chokeberry) wastes. Chemical Engineering Research and Design, 92(10): 1818-1826.
  • Delsart, C., Ghidossi, R., Poupot, C., Cholet, C., Grimi, N., Vorobiev, E., Milisic, V., Peuchot, M.M., 2012. Enhanced extraction of phenolic compounds from merlot grapes by pulsed electric field treatment. American Journal of Enology and Viticulture, 63 (2): 205–211.
  • Demir, E, Serdar, G., Sökmen, M., 2015. Comparison of some extraction methods for ısolation of catechins and caffeine from turkish green tea. International Journal of Secondary Metabolite, 2(2): 16-25.
  • Dhobi, M., Mandal, V., Hemalatha, S., 2009. Optimization Of Microwave Assisted Extraction Of Bioactive Flavolignan–Silybinin. Journal Of Chemical Metrology, 3 (1):13–23.
  • Dominguez, H., Ntiiiez, M.J., Lema, J.M., 1995. Enzyme-assisted hexane extraction of soybean oil. Food Chemistry, 54 (2): 223–231.
  • EPA, 2017. http://www.epa.gov/greenchemistry/pubs/about_gc.html. Erişim: Aralık 2017.
  • Erdogan, S., Ates, B., Durmaz, G., Yilmaz, I., Seckin, T., 2011. Pressurized liquid extraction of phenolic compounds from anatolia propolis and their radical scavenging capacities. Food And Chemical Toxicology, 49 (7):1592–1597.
  • Esclapez, M.D., García-Pérez, J.V., Mulet, A., Cárcel, J.A., 2011. Ultrasound-assisted extraction of natural products, Food Engineering Reviews, 3:108–120.
  • Fincan, M., De Vito, F., Dejmek, P., 2004. Pulsed electric field treatment for solid– liquid extraction of red beetroot pigment. Journal of Food Engineering, 64 (3): 381–388.Fincan, M., Dejmek, P., 2002. In situ visualization of the effect of a pulsed electric field on plant tissue. Journal Of Food Engineering 55 (3): 223–230.
  • Flint E.B., Suslick K.S., 1991. The temperature of cavitation, Science, 253: 1397–1399.
  • Ghafoor, K., Park, J., Choi, Y.H., 2010. Optimization of supercritical carbon dioxide extraction of bioactive compounds from grape peel (Vitis labrusca B.) by using response surface methodology. Innovative Food Science And Emerging Technologies, 11 (3): 485–490.
  • Gliszczy ´nska-Swigło, A.; Rybicka, I., 2015. Simultaneous determination of caffeine and water-soluble vitamins ´ in energy drinks by HPLC with photodiode array and fluorescence detection. Food Anal. Methods, 8: 139–146.
  • Gómez-García, R., Martínez-Ávila, G.C.G., Aguilar, C.N., 2012. Enzyme-assisted extraction of antioxidative phenolics from grape (Vitis vinifera L.) residues. 3 Biotech., 2(4):297-300.
  • González-Centeno M.R., Knoerzer K., Sabarez H., Simal S., Rosselló C., Femenia A. 2014. effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.) – A Response Surface Approach, Ultrason. Sonochem. 21: 2176–2184.
  • Guderjan, M., Töpfl, S., Angersbach, A., Knorr, D. 2005. Impact of pulsed electric field treatment on the recovery and quality of plant oils. Journal of food engineering, 67 (3): 281–287.
  • Hammi, K.M., Jdey, A., Abdelly, C., Majdoub, H., Ksouri, R., 2015. Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus Fruits using response surface methodology. Food Chemistry, 184: 80-89.
  • Handa, S.S, Khanuja, S.P.S., Longo, G., Rakesh, D.D., 2008. Extraction technologies for medicinal and aromatic plants. united nations ındustrial development organization and the ınternational centre for science and high technology. Icsunıdo Is Supported By The Italian Ministry Of Foreign Affairs, 35-51.
  • Hanmoungjai, P., Pyle, D.L., Niranjan, K., 2001. Enzymatic process for extracting oil and protein from rice bran. Journal of The American Oil Chemists Society, 78 (8): 817–821.
  • Heinz, V., Toepfl, S., Knorr, D., 2003. Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment. Innovative Food Science and Emerging Technologies 4 (2):167–175.
  • Herrera, M.C., Luque De Castro, M.D., 2004. Ultrasound-assisted extraction for the analysis of phenolic compounds in strawberries. Analytical and Bioanalytical Chemistry, 379 (7–8): 1106–1112.
  • Hossain, M.B., Brunton, N.P., Patras, A., Tiwari, B., O’donnell, C.P., Martindiana, A.B., Barry-Ryan, C., 2012. Optimization of ultrasound assisted extraction of antioxidant compounds from Marjoram (Origanum majorana L.) using response surface methodology. Ultrasonic Sonochemistry, 19 (3): 582–590.
  • Ibañez, E., Herrero, M., Mendiola, J.A., Castro-Puyana, M., 2012. Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria, and invertebrates. In: Hayes, M. (Ed.), Marine Bioactive Compounds: Sources, Characterization And Applications. Springer, Pp. 55–98.
  • Ilbay, Z., 2016. Turunçgil Meyve Ve Yapraklarının Farklı Ekstraksiyon Yöntemleriyle Ekstraksiyonu Ve Matematik Modellemesi. İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Anabilim Dalı, Temel İşlemler ve Termodinamik Bilim Dalı. 168. Doktora Tezi.
  • Inczedy, J., Lengyel, T., Ure, A.M., 1998. Supercritical fluid chromatography and extraction. compendium of analytical nomenclature (Definitive Rules 1997), Third Ed. Blackwell Science.
  • İçen, H.,Gürü, M., 2010. Effect of ethanol content on supercritical carbon dioxide extraction of caffeine from tea stalk and fiber wastes. Journal of Supercritical Fluids, 55(1): 156-160.
  • Jadhav, D., Rekha, B.N., Parag, R.G., Virendra, K.R., 2009. Extraction of vanillin from vanilla pods: a comparison study of conventional soxhlet and ultrasound assisted extraction. Journal of Food Engineering, 93: 421–426.
  • Jain, T., 2009. Microwave assisted extraction for phytoconstituents – An Overview. Asian Journal Of Research In Chemistry, 2 (1): 19–25.
  • Joaquín-Cruz, E., Dueñas, M., García-Cruz, L., Salinas-Moreno, Y., Santos-Buelga,C., García-Salinas, C., 2015. Anthocyanin and phenolic characterization, chemical composition and antioxidant activity of Chagalapoli (Ardisia compressak.) Fruit: A tropical source of natural pigments. Food Research International, 70: 151-157.
  • Kek, S., Chin, N., Yusof, Y., 2013. Direct and indirect power ultrasound assisted pre-osmotictreatments in convective drying of guava slices. Food Bioprod. Process., 91: 495–506.
  • Kurek, M.A., Karp, S., Wyrwisz, J., Niu, Y.G., 2018. Physicochemical properties of dietary fibers extracted from gluten-free sources: quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus) and millet (Panicum miliaceum). Food Hydrocolloids, 85:321-330.
  • Lang, Q., Wai, C.M., 2001. Supercritical fluid extraction in herbal and natural product studies a practical review. Talanta, 53 (4): 771–782.
  • Laroze, L., Soto, C., Zúñiga, M.E., 2010. Phenolic antioxidants extraction from raspberry wastes assisted by-enzymes. Electronic Journal of Biotechnology, 13 (6): 1-11.
  • Latif, S., Anwar, F., 2009. Physicochemical studies of hemp (cannabis sativa) seed oil using enzyme-assisted cold-pressing. European Journal Of Lipid Science And Technology, 111 (10): 1042–1048.
  • Lebovka, N.I., Bazhal, M.I., Vorobiev, E., 2002. Estimation of characteristic damage time of food materials in pulsed-electric fields. Journal Of Food Engineering, 54 (4): 337–346.
  • Legay, M., Gondrexon, N., Le Person, S., Boldo, P., Bontemps, A., 2011. Enhancement of heat transfer by ultrasound: review and recent advances, Int. J. Chem. Eng. Leong T., Ashokkumar M. S., 2011. Kentish, The fundamentals of power ultrasound: A Review, Acoust. Aust., 39: 54–63.
  • Letellier, M., Budzinski, H., 1999. Microwave assisted extraction of organic compounds. Analusis, 27 (3): 259–270.
  • Li, H., Chen, B., Yao, S., 2005. Application of ultrasonic technique for extracting chlorogenic acid from Eucommia ulmodies Oliv. (E. Ulmodies). Ultrasonics Sonochemistry, 12 (4): 295–300.
  • Li, H., Pordesimo, L., Weiss, J., 2004. high intensity ultrasound-assisted extraction of oil from soybeans, Food Research International, 37: 731–738.López, N., Puértolas, E., Condón, S., Raso, J., Álvarez, I., 2009. Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. Journal of Food Engineering, 90 (1): 60–66.
  • Luthria, D.L., 2008. Influence of experimental conditions on the extraction of phenolic compounds from parsley (Petroselinum crispum) flakes using a pressurized liquid extractor. Food Chemistry, 107 (2): 745–752.
  • Ma, Y. Q., Chen, J. C., Liu, D. H., Ye, X. Q., 2009. Simultaneous extraction of phenolic compounds of citrus peel extracts, effect of ultrasound. Ultrasonics Sonochemistry, 16: 57–62.
  • Ma, Y., Ye, X., Hao, Y., Xu, G., Xu, G., Liu, D., 2008. Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel, Ultrasonic Sonochemistry, 15 (3): 227–232.
  • Machado, A.P.F, Pereira A., Barbero, G.F., Martínez, J., 2017. recovery of anthocyanins from residues of Rubus fruticosus, Vaccinium myrtillus and Eugenia brasiliensis by ultrasoundassisted extraction, pressurized liquid extraction and their combination. Food Chemistry, 231: 1-10.
  • Mackersie, J.W., Timoshkin, I.V., MacGregor, S.J. , 2005. Generation of high-power ultrasound by spark discharges in water. IEEE Trans. Plasma Sci., 33 (5): 1715-1724.
  • Maier, T., Göppert, A., Kammerer, D.R., Schieber, A., Carle, R., 2008. Optimization of a process for enzyme-assisted pigment extraction from grape (Vitis vinifera L.) pomace. European Food Research And Technology, 227 (1): 267–275.
  • Margulis, M.A., Margulis, I.M., 2003. Calorimetric method for measurement of acoustic power absorbed ın a volume of a liquid. Ultrasonic Sonochemistry, 10: 343–345.
  • Márquez-Sillero, I.; Cárdenas, S.; Valcárcel, M. 2013. Determination of water-soluble vitamins in infant milk and dietary supplement using a liquid chromatography on-line coupled to a corona-charged aerosol detector. J. Chromatogr. A, 1313: 253–258.
  • Mason, T.J., 1990. Chemistry With Ultrasound, Elsevier Applied Science, New York.
  • Mason, T.J., Cobley, A.J., Graves, J.E., Morgan, D., 2011. New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound, Ultrasonic Sonochemistry, 18: 226–230.
  • Mason, T.J., Lorimer, J.P., 2002. General principles, In: T.J. Mason, J.P. Lorimer (Eds.), Applied Sonochemistry: Uses of power ultrasound in chemistry and processing, Wiley-Vch Verlag, Germany, Pp. 25–74.
  • Mroczek, T., Mazurek, J., 2009. Pressurized liquid extraction and anticholinesterase activity-based thin-layer chromatography with bioautography of amaryllidaceae alkaloids. Analytica Chimica Acta, 633 (2):188–196.
  • Nieto, A., Borrull, F., Pocurull, E., Marcé, R.M., 2010. pressurized liquid extraction: a useful technique to extract pharmaceuticals and personal-care products from sewage sludge. Trac Trends İn Analytical Chemistry, 29 (7):752–764.
  • Nipornram, S., Tochampa, W., Rattanatraiwong, P., 2018. Optimization of low power ultrasound-assisted extraction of phenolic compounds from Mandarin (Citrus Reticulata Blanco Cv. Sainampueng) peel. Food Chemistry, 241: 338-345.
  • Niranjan, K., Hanmoungjai, P., 2004. Enzyme-aided aquous extraction. In: Dunford, N.T., Dunford, H.B. (Eds.), Nutritionally Enhanced Edible Oil Processing. Aocs Publishing.
  • Palma, M., Barbero, G.F., Pineiro, Z., Liazid, A., Barroso, C.G., Rostagno, M.A., Prado, J.M., Meireles, M.A.A., 2013. Chapter 2: Extraction of natural products: Principles and fundamental aspects, In: M.A. Rostagno, J.M. Prado (Eds.), Natural Product Extraction: Principles and applications, The Royal Society of Chemistry, Uk, Pp. 58–88.
  • Palma, M., Barroso, C.G., 2002. Ultrasound-assisted extraction and determination of tartaric and malic acids from grapes and winemaking by-products. Analytica Chimica Acta, 458: 119-130.
  • Pan, X., Niu, G., Liu, H., 2003. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering And Processing, 42 (2): 129–133.
  • Pétrier, C., Gondrexon, N., Boldo, P., 2008. ultrasons et sonochimie, techniques de l’ingénieur chimie verte: optimisation des modes de séparation. D’activation Et De Synthèse Base Documentaire: Tıb493duo.
  • Pingret, D., Fabiano-Tixier, A. S., Chemat, F., 2013. Chapter 3: Ultrasound-Assisted Extraction, In: M.A. Rostagno, J.M. Prado (Eds.), Natural product extraction: Principles and applications, The Royal Society of Chemistry, Uk, 2013, Pp. 89– 112.
  • Ponmurugan, K., Al-Dhabi N.A., Maran, J.P., Karthikeyan, K., Moothy, I.G., Sivarajasekar, N., Manoj, J.J.B., 2017. Ultrasound assisted pectic polysaccharide extraction and its characterization from waste heads of Helianthus annus. Carbohydrate Polymers, 173: 707-713.
  • Poongothai, S., Ilavarasan, R., Karrunakaran, C.M., 2010. Simultaneous and accurate determination of vitamins B1, B6, B12 and alpha-lipoic acid in multivitamin capsule by reverse-phase high performance liquid chromatographic method. Int. J. Pharm. Pharm. Sci., 2: 133–139.
  • Puértolas, E., López, N., Saldaña, G., Álvarez, I., Raso, J., 2010. Evaluation of phenolic extraction during fermentation of red grapes treated by a continuous pulsed electric fields process at pilot-plant scale. Journal Of Food Engineering, 119 (3): 1063–1070.
  • Puri, M., Sharma, D., Barrow, C.J., 2012. Enzyme-assisted extraction of bioactives from plants. Trends In Biotechnology, 30 (1): 37–44.
  • Richter, B.E., Jones, B.A., Ezzell, J.L., Porter, N.L., Avdalovic, N., Pohl, C., 1996. Accelerated solvent extraction: a technology for sample preparation. Analytical Chemistry, 68 (6): 1033–1039.
  • Rosenthal, A., Pyle, D.L., Niranjan, K., 1996. Aqueous and enzymatic processes for edible oil extraction. Enzyme Microbial Technology, 19 (6): 402–420.
  • Rosenthal, A., Pyle, D.L., Niranjan, K., Gilmour, S., Trinca, L., 2001. Combined effect of operational variables and enzyme activity on aqueous enzymatic extraction of oil and protein from soybean. Enzyme and Microbial Technology, 28 (6):499– 509.
  • Rostagno, M.A., Palma, M., Barroso, C.G., 2004. Pressurized liquid extraction of isoflavones from soybeans. Analytica Chimica Acta, 522 (2): 169–177.
  • Salar Bashi, D., Mortazavi, S. A., Rezaei, K., Rajaei, A., Karimkhani, M. M., 2012. Optimization of ultrasound-assisted extraction of phenolic compounds from Yarrow (Achillea beibrestinii) by response surface methodology. Food Science and Biotechnology, 21(4): 1005–1011.
  • Sališová, M., Toma, Š., Mason, T.J., 1997. Comparison of conventional and ultrasonically assisted extractions of pharmaceutically active compounds from Salvia officinalis, Ultrasonic Sonochemistry, 4:131–134.
  • Santos, D.C.M.B., Carvalho, L.S.B., Lima,D.C., Leão, D.J., Teixeira, L.S.G., Graças, M., 2017. Korndetermination of micronutrient minerals in coconut milk by ICP-OES after ultrasound-assisted extraction procedure. Journal Of Food Composition and Analysis, 34(1):75-80.
  • Santos, H.M., Capelo, J.L., 2007. Trends in ultrasonic-based equipment for analytical sample treatment. Talanta, 73: 795–802.
  • Santos, H.M., Lodeiro, C., Capelo-Martínez, J.L., 2009. The power of ultrasound, In: Capelo-Martínez J. L. (Ed.), Ultrasound in chemistry: Analytical applications, Wiley-Vch Verlag, Germany, Pp. 1–16.
  • Sharma, A., Khare, S.K., Gupta, M.N., 2002. Enzyme-assisted aqueous extraction of peanut oil. Journal of American Oil Chemist’s Society, 79 (3): 215–218.
  • Shen, J., Shao, X., 2005. A comparison of accelerated solvent extraction, soxhlet extraction, and ultrasonic-assisted extraction for analysis of terpenoids and sterols in tobacco. Analytical And Bioanalytical Chemistry, 383 (6): 1003–1008.
  • Shen,Y., Zhang,X., Prinyawiwatkul, W., Xu, Z., 2014. Simultaneous determination of red and yellow artificial food colourants and carotenoid pigments in food products. Food Chemistry, 157: 553-558.
  • Shirsath, S.R., Sonawane, S.H., Gogate, P.R., 2012. Intensification of extraction of natural products using ultrasonic irradiations – a review of current status. Chemistry of Engineering Process, 53: 10–23.
  • Sihvonen, M., Järvenpää, E., Hietaniemi, V., Huopalahti, R., 1999. Advances in supercritical carbon dioxide technologies. Trends in Food Science and Technology, 10 (6–7): 217–222.
  • Singh, R.K., Sarker, B.C., Kumbhar, B.K., Agrawal, Y.C., Kulshreshtha, M.K., 1999. Response surface analysis of enzyme-assisted oil extraction factors for sesame, groundnut, and sunflower seeds. Journal of Food Science and Technology, 36 (6): 511–514.
  • Sivakumar, V., Lakshmi, A. J., Vijayeeswaree, J., Swaminathan, G., 2009. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather. Ultrasonics Sonochemistry, 16: 782–789.
  • Sun, Y., Liu, D., Chen, J., Ye, X., Yu, D., 2011. Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-b-carotene from citrus peels. Ultrasonic Sonochemistry, 18:243–249.
  • Suslick K.S., 1989. The chemical effects of ultrasound, Sci. Am. 260: 80–86.
  • Suslick, K.S., Didenko, Y., Fang, M.M., Hyeon, T., Kolbeck, K.J., Mcnamara, W.B., Mdleleni, M. M., Wong, M., 1999. Acoustic cavitation and its chemical consequences. Philosophical Transactions of the Royal Society of London, Ser. A, 357:335–353.
  • Suslick, K.S., Eddingsaas, N.C., Flannigan, D.J., Hopkins, S.D., Xu, H., 2011. Extreme conditions during multibubble cavitation: sonoluminescence as a spectroscopic probe. Ultrasonic Sonochemistry, 18: 842–846.
  • Temelli, F., Güçlü-Üstündag, Ö., 2005. Supercritical technologies for further processing of edible oils. Bailey’s Industrial Oil And Fat Products. John Wiley & Sons, Inc. Tiwari, B.K., 2015. Ultrasound: a clean, green extraction technology, TrAC Trends in Analytical Chemistry, 71: 100–109.
  • Toepfl, S., Mathys, A., Heinz, V., Knorr, D., 2006. Review: potential of high hydrostatic pressure and pulsed electric fields for energy efficiency and environmentally friendly food processing. Food Review International, 22 (4): 405–423.
  • Toma, M., Vinatoru, M., Paniwnyk, L., Mason, T.J., 2001. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrasonic Sonochemistry, 8: 137–142.
  • Velickovic, V., Durovic, S, Radojkovic, M., 2017. Application of conventional and non-conventional extraction approaches for extraction of Erica carnea L.: Chemical profile and biological activity of obtained extracts. Journal of Supercrıtıcal Fluıds, 128: 331-337.
  • Vilkhu, K., Manasseh, R., Mawson, R., Ashokkumar, M., 2011. Ultrasonic recovery and modification of food ingredients, In: H. Feng, G. Barbosa-Canovas, J. Weiss (Eds.), Ultrasound technologies for food and bioprocessing, Springer, New York, Usa, Pp. 345–368.
  • Vilkhu, K., Mawson, R., Simons, L., Bates, D., 2008. Applications and opportunities for ultrasound assisted extraction in the food industry – a review. Innovative Food Science Emerging Technology, 9:161–169.
  • Vinatoru, M. 2015. Ultrasonically assisted extraction (UAE) of natural products some guidelines for good practice and reporting, Ultrason. Sonochem., 25: 94–95. Vinatoru, M., 2001. An overview of ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonic Sonochemistry, 8:303–313.
  • Vinatoru, M., Mason, T.J., Calinescu, I., 2017. Ultrasonically assisted extraction (uae) and microwave assisted extraction (mae) of functional compounds from plant materials. Trends İn Analytical Chemistry, 97:159-178.
  • Virot, M., Tomao, V., Le Bourvellec, C., Renard, M.C.G.C., Chemat F., 2010. Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrasonics Sonochemistry, 17: 1066-1074.
  • Vorobiev, E., Jemai, A.B., Bouzrara, H., Lebovka, N.I., Bazhal, M.I., 2005. Pulsed electric field assisted extraction of juice from food plants. In: Barbosa-Canovas, G., Tapia, M.S., Cano, M.P. (Eds.), Novel Food Processing Technologies. Crc Press, New York, Pp. 105–130.
  • Vorobiev, E., Lebovka, N.I., 2006. Extraction of intercellular components by pulsed electric fields. In: Raso, J., Heinz, V. (Eds.), Pulsed Electric Field Technology For The Food Industry: Fundamentals And Applications. Springer, New York, Pp. 153–194.
  • Wang, L., Weller, C.L., 2006. Recent advances in extraction of nutraceuticals from plants. Trends İn Food Science & Technology, 17 (6): 300–312.
  • Wang, W., Chen, W.,Zou,M., Lv,R., Wang,D., Hou,F., Feng,H., Maa, X., Zhong, J., Tian D., Ye,X., Liu, D., 2018. Applications of power ultrasound in oriented modification and degradation of pectin: A review. Journal of Food Engineering, 234:98-107.
  • Wang, W., Ma, X., Xu, Y., Cao, Y., Jiang, Z., Ding, T., Ye, X., Liu, F.X., 2015. Ultrasound assisted extraction of peçtin from grapefruit peel: optimization and comparison with the conventional method. Food Chemistry, 178:106-114.
  • Wibetoe, G., Takuwa, D.T., Lund, W., Sawula, G., 1999. Coulter particle analysis used forstudying the effect of sample treatment in slurry sampling electrothermal atomicabsorption spectrometry. Fresenius' J. Anal. Chem., 363: 46–54.
  • Xia, T., Shi, S., Wan, X., 2006. Impact of ultrasonic-assisted extraction on the chemical and sensory quality of tea infusion. Journal of Food Engineering, 74: 557–560.
  • Xu, D.P., Zheng, J., Zhou, Y., Li, Y., Li,S., Li, H.B., 2017. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and Comparison with Conventional Methods Food Chemistry, 217: 552-559.
  • Xu, X., Dong, J., Mu, X., Sun, L., 2011. Supercritical CO2 extraction of oil, carotenoids, squalene and sterols from lotus (Nelumbo nucifera gaertn) bee pollen, Food And Bioproducts Processing, 89: 47–52.
  • Yang, X., Li, Y., Li, S., Oladejo, A.O., Wang,Y., Huang, S., Zhou, C., Ye, X., Ma, H., Duan, Y., 2018. Effects of ultrasound-assisted α-amylase degradation treatment with multiple modes on the extraction of rice protein. Ultrasonics Sonochemistry, 40: 890-899.
  • Yang, Y., Zhang, F., 2008. Ultrasound-assisted extraction of rutin and quercetin from Euonymus alatus (Thunb.) Sieb. Ultrasonics Sonochemistry, 15 (4): 308–313.Zhang H.F., Yang X.H., Zhao L.D., Wang, Y., 2009a. Ultrasonic-assisted extraction of epimedin c from fresh leaves of Epimedium and extraction mechanism. Innovative Food Science Emerging Technology, 10:54–60.
  • Zhang Q.A., Zhang Z.Q., Yue X.F., Fan X.H., Li T., Chen S.F., 2009b. Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder, Food Chemistry, 116:513–518.
  • Zhang Z.S., Wang L.J., Li, D., Jiao, S.S., Chen, X.D., Mao Z.H., 2008. Ultrasound assisted extraction of oil from flaxseed. Seperation and Purification Technology, 62: 192– 198.
  • Zhang, Q.A., Wang, T.T., 2017. effect of ultrasound irradiation on the evolution of color properties and major phenolic compounds in wine during storage. Food Chemistry, 234: 372-380.
  • Zhao, L.I., Zhao, G., Chen, F., Wang, Z., Wu, J., Hu, X., 2006. Different effects of microwave and ultrasound on the stability of (all-e)-astaxanthin. Journal of Agricultural Food Chemistry, 54(21): 8346-51.
  • Zhu, Z., Wu, Q., Di, X., Li, S., Barba, F.J., Koubaa, M., Roohinejad,S., Xiong,X., He,J., 2017. Multistage recovery process of seaweed pigments: ınvestigation of ultrasound assisted extraction and ultra-filtration performances. Food and Bioproducts Processing, 104: 40-47.
There are 134 citations in total.

Details

Primary Language Turkish
Journal Section DERLEMELER
Authors

Memnune Şengül

Elif Feyza Topdaş 0000-0003-3778-3654

Publication Date May 28, 2019
Published in Issue Year 2019 Volume: 50 Issue: 2

Cite

APA Şengül, M., & Topdaş, E. F. (2019). Katı-Sıvı Ekstraksiyonunda Kullanılan Modern Teknikler ve Bu Teknikler Arasında Ultrason Yardımlı Ekstraksiyonun Yeri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(2), 201-216. https://doi.org/10.17097/ataunizfd.466649
AMA Şengül M, Topdaş EF. Katı-Sıvı Ekstraksiyonunda Kullanılan Modern Teknikler ve Bu Teknikler Arasında Ultrason Yardımlı Ekstraksiyonun Yeri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. May 2019;50(2):201-216. doi:10.17097/ataunizfd.466649
Chicago Şengül, Memnune, and Elif Feyza Topdaş. “Katı-Sıvı Ekstraksiyonunda Kullanılan Modern Teknikler Ve Bu Teknikler Arasında Ultrason Yardımlı Ekstraksiyonun Yeri”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 50, no. 2 (May 2019): 201-16. https://doi.org/10.17097/ataunizfd.466649.
EndNote Şengül M, Topdaş EF (May 1, 2019) Katı-Sıvı Ekstraksiyonunda Kullanılan Modern Teknikler ve Bu Teknikler Arasında Ultrason Yardımlı Ekstraksiyonun Yeri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 50 2 201–216.
IEEE M. Şengül and E. F. Topdaş, “Katı-Sıvı Ekstraksiyonunda Kullanılan Modern Teknikler ve Bu Teknikler Arasında Ultrason Yardımlı Ekstraksiyonun Yeri”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 50, no. 2, pp. 201–216, 2019, doi: 10.17097/ataunizfd.466649.
ISNAD Şengül, Memnune - Topdaş, Elif Feyza. “Katı-Sıvı Ekstraksiyonunda Kullanılan Modern Teknikler Ve Bu Teknikler Arasında Ultrason Yardımlı Ekstraksiyonun Yeri”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 50/2 (May 2019), 201-216. https://doi.org/10.17097/ataunizfd.466649.
JAMA Şengül M, Topdaş EF. Katı-Sıvı Ekstraksiyonunda Kullanılan Modern Teknikler ve Bu Teknikler Arasında Ultrason Yardımlı Ekstraksiyonun Yeri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2019;50:201–216.
MLA Şengül, Memnune and Elif Feyza Topdaş. “Katı-Sıvı Ekstraksiyonunda Kullanılan Modern Teknikler Ve Bu Teknikler Arasında Ultrason Yardımlı Ekstraksiyonun Yeri”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, vol. 50, no. 2, 2019, pp. 201-16, doi:10.17097/ataunizfd.466649.
Vancouver Şengül M, Topdaş EF. Katı-Sıvı Ekstraksiyonunda Kullanılan Modern Teknikler ve Bu Teknikler Arasında Ultrason Yardımlı Ekstraksiyonun Yeri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2019;50(2):201-16.

Articles published in this journal are published under the Creative Commons International License (https://creativecommons.org/licenses/by-nc/4.0/). This allows the work to be copied and distributed in any medium or format provided that the original article is appropriately cited. However, the articles work cannot be used for commercial purposes.

https://creativecommons.org/licenses/by-nc/4.0/