Research Article
BibTex RIS Cite

New generalization of reverse Minkowski's inequality for fractional integral

Year 2021, Volume: 5 Issue: 1, 72 - 81, 31.03.2021
https://doi.org/10.31197/atnaa.756605

Abstract

In this research, we introduce some new fractional integral inequalities of Minkowski’s type by using Riemann-Liouville fractional
integral operator. We replace the constants that appear on Minkowski’s inequality by two positive functions. Further, we
establish some new fractional inequalities related to the reverse Minkowski type inequalities via Riemann-Liouville fractional
integral. Using this fractional integral operator, some special cases of reverse Minkowski type are also discussed.

Supporting Institution

None

Project Number

None

References

  • [1] M.S. Abdo, K. shah, S.K. Panchal, H.A. Wahash, Existence and Ulam stability results of a coupled system for terminal value problems involving -Hilfer fractional operator, Adv. Di er. Equ., 2020(1), 1-21.
  • [2] M.S. Abdo, T.Abdeljawad, S. M. Ali, K. shah, F. Jarad, Existence of positive solutions for weighted fractional order differential equations, Chaos Solitons Fractals 141, (2020), 110341. https://doi.org/10.1016/j.chaos.2020.110341
  • [3] T.A. Aljaaidi, D.B. Pachpatte, Some Gruss-type Inequalities Using Generalized Katugampola Fractional Integral, AIMS Mathematics, 5(2), (2020), 1011-1024. doi: 10.3934/math.2020070
  • [4] T.A. Aljaaidi, D.B. Pachpatte, The Minkowski's Inequalities via ψ-Riemann-Liouville fractional Integral Operators, Rend. Circ. Mat. Palermo, ii. ser. (2020). https://doi.org/10.1007/s12215-020-00539-w
  • [5] G.A. Anastassiou, Fractional Differentiation Inequalities, Springer, Dordrecht, The Netherlands, (2010).
  • [6] L. Bougoffa, On Minkowski and Hardy integral inequalities, Journal of Inequalities in Pure and Applied Mathematics, 7 (2), (2006), 1-3.
  • [7] V.L. Chinchane, D.B. Pachpatte, New fractional inequalities involving Saigo fractional integral operator, Math. Sci. Lett., 3 (3), (2014), 133-139.
  • [8] V. L. Chinchane, D. B. Pachpatte, New fractional inequalities via Hadamard fractional integral, Internat. J. Functional Analysis and Application, 5 (3), (2013), 165-176. http://dx.doi.org/10.12785/msl/030301
  • [9] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (1), (2010), 51-58.
  • [10] R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientifc, Singapore (2011).
  • [11] E. Kreyszig, Introductory Functional Analysis with Applications, vol 1, Wiley, New York, (1989).
  • [12] H. Khan, T. Abdeljawad, C. Tunç, A. Alkhazzan, A. Khan, Minkowski's inequality for the AB-fractional integral operator, J. Inequal. Appl., (96), (2019). https://doi.org/10.1186/s13660-019-2045-3
  • [13] A.A. Kilbas, H.M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Di?erential Equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, (2006).
  • [14] S. Mubeen, S. Habib, M.N. Naeem, The Minkowski inequality involving generalized k-fractional conformable integral, J. Inequal. Appl., (81), (2019), (Online). https://doi.org/10.1186/s13660-019-2040-8
  • [15] G. Rahman, A. Khan, T. Abdeljawad, K.S. Nisar, The Minkowski inequalities via generalized proportional fractional integral operators, Advances in Di?erence Equations, (287), (2019). https://doi.org/10.1186/s13662-019-2229-7
  • [16] E. Set, M. Ozdemir, S. Dragomir, On the Hermite-Hadamard inequality and other integral inequalities involving two functions, J. Inequal. Appl., (2010), (online). https://doi.org/10.1155/2010/148102
  • [17] J. Sousa, D. S. Oliveira, E. Capelas de Oliveira, Gruss-Type Inequalities by Means of Generalized Fractional Integrals, Bull. Braz. Math. Soc., 50 (4), (2019) (online). https://doi.org/10.1007/s00574-019-00138-z
  • [18] W.T. Sulaiman, Reverses of Minkowski's, Hölder's, and Hardy's integral inequalities, Int. J. Mod. Math. Sci., 1 (1), (2012), 14-24.
  • [19] S. Taf, K. Brahim, Some new results using Hadamard fractional integral, Int. J. Nonlinear Anal. Appl., 7 (1) (2015), 103-109.
  • [20] F. Usta, H. Budak, F. Ertu gral, M.Z. Sarikaya, The Minkowski's inequalities utilizing newly defined generalized fractional integral operators, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 68 (1), (2019), 686-701.
  • [21] J. Vanterler da, C. Sousa, E. Capelas de Oliveira, The Minkowski's inequality by means of a generalized fractional integral, AIMS Ser. Appl. Math. 3 (1), (2018), 131-147.
Year 2021, Volume: 5 Issue: 1, 72 - 81, 31.03.2021
https://doi.org/10.31197/atnaa.756605

Abstract

Project Number

None

References

  • [1] M.S. Abdo, K. shah, S.K. Panchal, H.A. Wahash, Existence and Ulam stability results of a coupled system for terminal value problems involving -Hilfer fractional operator, Adv. Di er. Equ., 2020(1), 1-21.
  • [2] M.S. Abdo, T.Abdeljawad, S. M. Ali, K. shah, F. Jarad, Existence of positive solutions for weighted fractional order differential equations, Chaos Solitons Fractals 141, (2020), 110341. https://doi.org/10.1016/j.chaos.2020.110341
  • [3] T.A. Aljaaidi, D.B. Pachpatte, Some Gruss-type Inequalities Using Generalized Katugampola Fractional Integral, AIMS Mathematics, 5(2), (2020), 1011-1024. doi: 10.3934/math.2020070
  • [4] T.A. Aljaaidi, D.B. Pachpatte, The Minkowski's Inequalities via ψ-Riemann-Liouville fractional Integral Operators, Rend. Circ. Mat. Palermo, ii. ser. (2020). https://doi.org/10.1007/s12215-020-00539-w
  • [5] G.A. Anastassiou, Fractional Differentiation Inequalities, Springer, Dordrecht, The Netherlands, (2010).
  • [6] L. Bougoffa, On Minkowski and Hardy integral inequalities, Journal of Inequalities in Pure and Applied Mathematics, 7 (2), (2006), 1-3.
  • [7] V.L. Chinchane, D.B. Pachpatte, New fractional inequalities involving Saigo fractional integral operator, Math. Sci. Lett., 3 (3), (2014), 133-139.
  • [8] V. L. Chinchane, D. B. Pachpatte, New fractional inequalities via Hadamard fractional integral, Internat. J. Functional Analysis and Application, 5 (3), (2013), 165-176. http://dx.doi.org/10.12785/msl/030301
  • [9] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (1), (2010), 51-58.
  • [10] R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientifc, Singapore (2011).
  • [11] E. Kreyszig, Introductory Functional Analysis with Applications, vol 1, Wiley, New York, (1989).
  • [12] H. Khan, T. Abdeljawad, C. Tunç, A. Alkhazzan, A. Khan, Minkowski's inequality for the AB-fractional integral operator, J. Inequal. Appl., (96), (2019). https://doi.org/10.1186/s13660-019-2045-3
  • [13] A.A. Kilbas, H.M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Di?erential Equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, (2006).
  • [14] S. Mubeen, S. Habib, M.N. Naeem, The Minkowski inequality involving generalized k-fractional conformable integral, J. Inequal. Appl., (81), (2019), (Online). https://doi.org/10.1186/s13660-019-2040-8
  • [15] G. Rahman, A. Khan, T. Abdeljawad, K.S. Nisar, The Minkowski inequalities via generalized proportional fractional integral operators, Advances in Di?erence Equations, (287), (2019). https://doi.org/10.1186/s13662-019-2229-7
  • [16] E. Set, M. Ozdemir, S. Dragomir, On the Hermite-Hadamard inequality and other integral inequalities involving two functions, J. Inequal. Appl., (2010), (online). https://doi.org/10.1155/2010/148102
  • [17] J. Sousa, D. S. Oliveira, E. Capelas de Oliveira, Gruss-Type Inequalities by Means of Generalized Fractional Integrals, Bull. Braz. Math. Soc., 50 (4), (2019) (online). https://doi.org/10.1007/s00574-019-00138-z
  • [18] W.T. Sulaiman, Reverses of Minkowski's, Hölder's, and Hardy's integral inequalities, Int. J. Mod. Math. Sci., 1 (1), (2012), 14-24.
  • [19] S. Taf, K. Brahim, Some new results using Hadamard fractional integral, Int. J. Nonlinear Anal. Appl., 7 (1) (2015), 103-109.
  • [20] F. Usta, H. Budak, F. Ertu gral, M.Z. Sarikaya, The Minkowski's inequalities utilizing newly defined generalized fractional integral operators, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., 68 (1), (2019), 686-701.
  • [21] J. Vanterler da, C. Sousa, E. Capelas de Oliveira, The Minkowski's inequality by means of a generalized fractional integral, AIMS Ser. Appl. Math. 3 (1), (2018), 131-147.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Tariq A. Aljaaidi 0000-0003-3763-4878

Deepak Pachpatte 0000-0003-3763-4878

Project Number None
Publication Date March 31, 2021
Published in Issue Year 2021 Volume: 5 Issue: 1

Cite