Review
BibTex RIS Cite

Bakteriyel Biyofilmler: Gida İşletmelerinde Oluşumu, Özellikleri ve Önlenmesi

Year 2019, Volume: 3 Issue: 2, 87 - 100, 27.07.2019

Abstract

Biyofilmler, bakteriyal aderans (adezyon, tutunma) suretiyle birbirine ve herhangi bir yüzeye bağlanabilen mikroorganizma topluluklarıdır. Bakteriyel biyofilmlerin birbirine ve yüzeylere yapışma kabiliyetleri, zorlu çevresel koşullardan korunma, büyüme için besinlerin kullanılabilirliğinin arttırılması, su moleküllerinin bağlanmasının arttırılması, dehidrasyon olasılığının azaltılması ve genetik malzemelerin aktarılması gibi avantajlar elde etmelerini sağlar. Bakteriyel biyofilmler, bir yüzeye ilk bakteri yapışmasını, mikro koloni ve biyofilm yapısının oluşumunu kolaylaştıran, yüksek oranda hidratlanmış hücre dışı polimerik maddeler ağının üretimi ile karakterize edilirler. Gıda temas yüzeyinde, özellikle Pseudomonas, Enterococcus türleri, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli ve Salmonella türleri gibi farklı patojenler nedeniyle biyofilm oluşumu gıdaların bulaşmasına neden olmaktadır. Bu durumun sonuçları her zaman gıda güvenliği, gıda hijyeni ve gıda kalitesinin temel sorunu olarak karşımıza çıkmaktadır.


References

  • Annous, B. A., Fratamico, P. M., Smith, J. L. (2009). Scientific status summary: quorum sensing in biofilms: why bacteria behave the way they do. Journal of Food Science, 74(1): 24-37.
  • Bakker, D. P., Postmus, B. R., Busscher, H. J., van der Mei, H. C. (2004). Bacterial strains isolated from different niches can exhibit different patterns of adhesion to substrata. Appl. Environ. Microbiol., 70(6): 3758-3760.
  • Bassi, D., Cappa, F., Gazzola, S., Orrù, L., Cocconcelli, P. S. (2017). Biofilm formation on stainless steel by Streptococcus thermophilus UC8547 in milk environments is mediated by the proteinase PrtS. Appl. Environ. Microbiol., 83(8): e02840-16.
  • Billings, N., Birjiniuk, A., Samad, T. S., Doyle, P. S., Ribbeck, K. (2015). Material properties of biofilms—a review of methods for understanding permeability and mechanics. Reports on Progress in Physics, 78(3): 036601.
  • Chmielewski, R. A. N., Frank, J. F. (2003). Biofilm formation and control in food processing facilities. Comprehensive reviews in food science and food safety, 2(1): 22-32.
  • Dalla Costa, K. A., Ferenz, M., da Silveira, S. M., Millezi, A. F. (2017). Bacterial biofilm formation in different surfaces of food industries. Revista do Instituto de Latícinios Cândido Tostes, 71(2): 75-82.
  • Das, M. P., Kumar, S. A. N. T. O. S. H. (2013). Influence of cell surface hydrophobicity in colonization and biofilm formation on LDPE biodegradation. Int. J. Pharm. Pharm Sci., 5: 690-694.
  • Davey, M. E., O'toole, G. A. (2000). Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev., 64(4): 847-867.
  • DeQueiroz, G. A., Day, D. F. (2007). Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces. Journal of Applied Microbiology, 103(4): 794-802.
  • Dias, C., Borges, A., Saavedra, M. J., Simões, M. (2018). Biofilm formation and multidrug-resistant Aeromonas spp. from wild animals. Journal of global antimicrobial resistance, 12: 227-234.
  • Donlan, R.M. (2001). Biofilm formation: a clinically relevant microbiological process. Clinical Infectious Diseases, 33(8): 1387-1392.
  • Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 8(9): 881-890.
  • Doulgeraki, A. I., Di Ciccio, P., Ianieri, A., Nychas, G. J. E. (2017). Methicillin-resistant food-related Staphylococcus aureus: a review of current knowledge and biofilm formation for future studies and applications. Research in microbiology, 168(1): 1-15.
  • Dunne, W.M. (2002). Bacterial adhesion: seen any good biofilms lately? Clinical Microbiology Reviews, 15(2): 155-166.
  • Furukawa, S., Akiyoshi, Y., Komoriya, M., Ogihara, H., Morinaga, Y. (2010). Removing Staphylococcus aureus and Escherichia coli biofilms on stainless steel by cleaning-in-place (CIP) cleaning agents. Food Control, 21(5): 669-672.
  • Garrett, T. R., Bhakoo, M., Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18(9): 1049-1056.
  • Gomes, L., Moreira, J., Araújo, J. D., & Mergulhão, F. (2017). Surface conditioning with Escherichia coli cell wall components can reduce biofilm formation by decreasing initial adhesion.
  • Jamal, M., Tasneem, U., Hussain, T., Andleeb, S. (2015). Bacterial biofilm: its composition, formation and role in human infections. RRJMB, 4: 1-14.
  • Jefferson, K. K. (2004). What drives bacteria to produce a biofilm? FEMS Microbiology Letters, 236(2): 163-173.
  • Kostakioti, M., Hadjifrangiskou, M., Hultgren, S.J. (2013). Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor Perspectives in Medicine, 3(4): a010306.
  • Krasowska, A., Sigler, K. (2014). How microorganisms use hydrophobicity and what does this mean for human needs? Frontiers in Cellular and Infection Microbiology, 4, 112. DOI: 10.3389/fcimb.2014.00112
  • Lebeer, S., Verhoeven, T. L., Vélez, M. P., Vanderleyden, J., De Keersmaecker, S. C. (2007). Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl. Environ. Microbiol., 73(21): 6768-6775.
  • Li, Y. H., Tian, X. (2012). Quorum sensing and bacterial social interactions in biofilms. Sensors, 12(3): 2519-2538.
  • Maifreni, M., Frigo, F., Bartolomeoli, I., Buiatti, S., Picon, S., Marino, M. (2015). Bacterial biofilm as a possible source of contamination in the microbrewery environment. Food Control, 50: 809-814.
  • Marić, S., Vraneš, J. (2007). Characteristics and significance of microbial biofilm formation. Periodicum Bilogorum, 109: 115-121.
  • Marion-Ferey, K., Pasmore, M., Stoodley, P., Wilson, S., Husson, G. P., Costerton, J. W. (2003). Biofilm removal from silicone tubing: an assessment of the efficacy of dialysis machine decontamination procedures using an in vitro model. Journal of Hospital Infection, 53(1): 64-71.
  • Moreira, J. M. R., Gomes, L. C., Whitehead, K. A., Lynch, S., Tetlow, L. A., Mergulhão, F. J. (2017). Effect of surface conditioning with cellular extracts on Escherichia coli adhesion and initial biofilm formation. Food and Bioproducts Processing, 104: 1-12.
  • Møretrø, T., Hermansen, L., Holck, A. L., Sidhu, M. S., Rudi, K., Langsrud, S. (2003). Biofilm formation and the presence of the intercellular adhesion locus ica among Staphylococci from food and food processing environments. Appl. Environ. Microbiol., 69(9): 5648-5655.
  • Morimatsu, K., Eguchi, K., Hamanaka, D., Tanaka, F., Uchino, T. (2012). Effects of temperature and nutrient conditions on biofilm formation of Pseudomonas putida. Food Science and Technology Research, 18(6): 879-883.
  • Niemira, B. A., & Solomon, E. B. (2005). Sensitivity of planktonic and biofilm-associated Salmonella spp. to ionizing radiation. Appl. Environ. Microbiol., 71(5): 2732-2736.
  • Oliveira, M. M. M. D., Brugnera, D. F., Alves, E., Piccoli, R. H. (2010). Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential. Brazilian Journal of Microbiology, 41(1): 97-106.
  • Pagán, R., García-Gonzalo, D. (2015). Influence of environmental factors on bacterial biofilm formation in the food industry: A review. Journal of Postdoctoral Research, 3 (6): 3-13
  • Phillips, C. A. (2016). Bacterial biofilms in food processing environments: a review of recent developments in chemical and biological control. International Journal of Food Science and Technology, 51(8): 1731-1743.
  • Rochex, A., Lebeault, J.M. (2007). Effects of nutrients on biofilm formation and detachment of a Pseudomonas putida strain isolated from a paper machine. Water Research, 41(13): 2885-2892.
  • Rossi, C., Serio, A., Chaves-López, C., Anniballi, F., Auricchio, B., Goffredo, E., Paparella, A. (2018). Biofilm formation, pigment production and motility in Pseudomonas spp. isolated from the dairy industry. Food Control, 86: 241-248.
  • Sadekuzzaman, M., Yang, S., Mizan, M. F. R., Ha, S. D. (2015). Current and recent advanced strategies for combating biofilms. Comprehensive Reviews in Food Science and Food Safety, 14(4): 491-509.
  • Shrout, J. D., Tolker-Nielsen, T., Givskov, M., Parsek, M. R. (2011). The contribution of cell-cell signaling and motility to bacterial biofilm formation. MRS Bulletin, 36(5): 367-373.
  • Siboni, N., Lidor, M., Kramarsky-Winter, E., Kushmaro, A. (2007). Conditioning film and initial biofilm formation on ceramics tiles in the marine environment. FEMS Microbiology Letters, 274(1): 24-29.
  • Simões, M., Simões, L. C., Vieira, M. J. (2010). A review of current and emergent biofilm control strategies. LWT-Food Science and Technology, 43(4): 573-583.
  • Srey, S., Jahid, I. K., Ha, S. D. (2013). Biofilm formation in food industries: a food safety concern. Food Control, 31(2): 572-585.
  • Téllez, S. (2010). Biofilms and their impact on food industry. VISAVET Outreach Journal. https://www.visavet.es/en/articles/biofilms-impact-food-industry.php
  • Torres, C. E., Lenon, G., Craperi, D., Wilting, R., Blanco, Á. (2011). Enzymatic treatment for preventing biofilm formation in the paper industry. Applied Microbiology and Biotechnology, 92(1): 95-103.
  • Toyofuku, M., Inaba, T., Kiyokawa, T., Obana, N., Yawata, Y., Nomura, N. (2016). Environmental factors that shape biofilm formation. Bioscience, Biotechnology and Biochemistry, 80(1): 7-12.
  • Tuson, H. H., Weibel, D. B. (2013). Bacteria–surface interactions. Soft Matter, 9(17): 4368-4380. Van Houdt, R., Michiels, C. W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, 109(4): 1117-1131.
  • Winkelstroter, L.K. (2015). Microbial Biofilms: The Challenge of Food Industry. Biochemistry and Molecular Biology Journal, 1(1:5): 1-3 DOI: 10.21767/2471-8084.100005.
  • Wirtanen, G., Husmark, U., Mattila-Sandholm, T. (1996). Microbial evaluation of the biotransfer potential from surfaces with Bacillus biofilms after rinsing and cleaning procedures in closed food-processing systems. Journal of Food Protection, 59(7): 727-733.
  • Zhao, X., Zhao, F., Wang, J., Zhong, N. (2017). Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Advances, 7(58): 36670-36683.

Bacterial Biofilms: Formation, Properties and Its Prevention in Food Industry

Year 2019, Volume: 3 Issue: 2, 87 - 100, 27.07.2019

Abstract

Biofilms are communities of microorganisms that are able to attach to
each other and to any surfaces by bacterial adherence. The ability of bacterial
biofilms to attach to each other and surfaces makes them to get advantages such
as protection from harsh environmental situation, increasing availability of
nutrients for growth, increasing binding of water molecules, reducing the
possibility of dehydration and transferring of genetic materials. They are
characterized by the production of an excessive network of highly hydrated
extracellular polymeric substances facilitating the initial bacterial
attachment to a surface, formation of micro colony and biofilm structure. The
biofilms formation on the food contact surface, in particular caused by different
pathogens such as Pseudomonas, Enterococcus species, Listeria
monocytogenes, Staphylococcus aureus, Escherichia coli 
and Salmonella species,
causes contamination of foods. The consequences of this situation always become
the fundamental problem of food safety, hygiene and quality. 

References

  • Annous, B. A., Fratamico, P. M., Smith, J. L. (2009). Scientific status summary: quorum sensing in biofilms: why bacteria behave the way they do. Journal of Food Science, 74(1): 24-37.
  • Bakker, D. P., Postmus, B. R., Busscher, H. J., van der Mei, H. C. (2004). Bacterial strains isolated from different niches can exhibit different patterns of adhesion to substrata. Appl. Environ. Microbiol., 70(6): 3758-3760.
  • Bassi, D., Cappa, F., Gazzola, S., Orrù, L., Cocconcelli, P. S. (2017). Biofilm formation on stainless steel by Streptococcus thermophilus UC8547 in milk environments is mediated by the proteinase PrtS. Appl. Environ. Microbiol., 83(8): e02840-16.
  • Billings, N., Birjiniuk, A., Samad, T. S., Doyle, P. S., Ribbeck, K. (2015). Material properties of biofilms—a review of methods for understanding permeability and mechanics. Reports on Progress in Physics, 78(3): 036601.
  • Chmielewski, R. A. N., Frank, J. F. (2003). Biofilm formation and control in food processing facilities. Comprehensive reviews in food science and food safety, 2(1): 22-32.
  • Dalla Costa, K. A., Ferenz, M., da Silveira, S. M., Millezi, A. F. (2017). Bacterial biofilm formation in different surfaces of food industries. Revista do Instituto de Latícinios Cândido Tostes, 71(2): 75-82.
  • Das, M. P., Kumar, S. A. N. T. O. S. H. (2013). Influence of cell surface hydrophobicity in colonization and biofilm formation on LDPE biodegradation. Int. J. Pharm. Pharm Sci., 5: 690-694.
  • Davey, M. E., O'toole, G. A. (2000). Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev., 64(4): 847-867.
  • DeQueiroz, G. A., Day, D. F. (2007). Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces. Journal of Applied Microbiology, 103(4): 794-802.
  • Dias, C., Borges, A., Saavedra, M. J., Simões, M. (2018). Biofilm formation and multidrug-resistant Aeromonas spp. from wild animals. Journal of global antimicrobial resistance, 12: 227-234.
  • Donlan, R.M. (2001). Biofilm formation: a clinically relevant microbiological process. Clinical Infectious Diseases, 33(8): 1387-1392.
  • Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 8(9): 881-890.
  • Doulgeraki, A. I., Di Ciccio, P., Ianieri, A., Nychas, G. J. E. (2017). Methicillin-resistant food-related Staphylococcus aureus: a review of current knowledge and biofilm formation for future studies and applications. Research in microbiology, 168(1): 1-15.
  • Dunne, W.M. (2002). Bacterial adhesion: seen any good biofilms lately? Clinical Microbiology Reviews, 15(2): 155-166.
  • Furukawa, S., Akiyoshi, Y., Komoriya, M., Ogihara, H., Morinaga, Y. (2010). Removing Staphylococcus aureus and Escherichia coli biofilms on stainless steel by cleaning-in-place (CIP) cleaning agents. Food Control, 21(5): 669-672.
  • Garrett, T. R., Bhakoo, M., Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18(9): 1049-1056.
  • Gomes, L., Moreira, J., Araújo, J. D., & Mergulhão, F. (2017). Surface conditioning with Escherichia coli cell wall components can reduce biofilm formation by decreasing initial adhesion.
  • Jamal, M., Tasneem, U., Hussain, T., Andleeb, S. (2015). Bacterial biofilm: its composition, formation and role in human infections. RRJMB, 4: 1-14.
  • Jefferson, K. K. (2004). What drives bacteria to produce a biofilm? FEMS Microbiology Letters, 236(2): 163-173.
  • Kostakioti, M., Hadjifrangiskou, M., Hultgren, S.J. (2013). Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor Perspectives in Medicine, 3(4): a010306.
  • Krasowska, A., Sigler, K. (2014). How microorganisms use hydrophobicity and what does this mean for human needs? Frontiers in Cellular and Infection Microbiology, 4, 112. DOI: 10.3389/fcimb.2014.00112
  • Lebeer, S., Verhoeven, T. L., Vélez, M. P., Vanderleyden, J., De Keersmaecker, S. C. (2007). Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl. Environ. Microbiol., 73(21): 6768-6775.
  • Li, Y. H., Tian, X. (2012). Quorum sensing and bacterial social interactions in biofilms. Sensors, 12(3): 2519-2538.
  • Maifreni, M., Frigo, F., Bartolomeoli, I., Buiatti, S., Picon, S., Marino, M. (2015). Bacterial biofilm as a possible source of contamination in the microbrewery environment. Food Control, 50: 809-814.
  • Marić, S., Vraneš, J. (2007). Characteristics and significance of microbial biofilm formation. Periodicum Bilogorum, 109: 115-121.
  • Marion-Ferey, K., Pasmore, M., Stoodley, P., Wilson, S., Husson, G. P., Costerton, J. W. (2003). Biofilm removal from silicone tubing: an assessment of the efficacy of dialysis machine decontamination procedures using an in vitro model. Journal of Hospital Infection, 53(1): 64-71.
  • Moreira, J. M. R., Gomes, L. C., Whitehead, K. A., Lynch, S., Tetlow, L. A., Mergulhão, F. J. (2017). Effect of surface conditioning with cellular extracts on Escherichia coli adhesion and initial biofilm formation. Food and Bioproducts Processing, 104: 1-12.
  • Møretrø, T., Hermansen, L., Holck, A. L., Sidhu, M. S., Rudi, K., Langsrud, S. (2003). Biofilm formation and the presence of the intercellular adhesion locus ica among Staphylococci from food and food processing environments. Appl. Environ. Microbiol., 69(9): 5648-5655.
  • Morimatsu, K., Eguchi, K., Hamanaka, D., Tanaka, F., Uchino, T. (2012). Effects of temperature and nutrient conditions on biofilm formation of Pseudomonas putida. Food Science and Technology Research, 18(6): 879-883.
  • Niemira, B. A., & Solomon, E. B. (2005). Sensitivity of planktonic and biofilm-associated Salmonella spp. to ionizing radiation. Appl. Environ. Microbiol., 71(5): 2732-2736.
  • Oliveira, M. M. M. D., Brugnera, D. F., Alves, E., Piccoli, R. H. (2010). Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential. Brazilian Journal of Microbiology, 41(1): 97-106.
  • Pagán, R., García-Gonzalo, D. (2015). Influence of environmental factors on bacterial biofilm formation in the food industry: A review. Journal of Postdoctoral Research, 3 (6): 3-13
  • Phillips, C. A. (2016). Bacterial biofilms in food processing environments: a review of recent developments in chemical and biological control. International Journal of Food Science and Technology, 51(8): 1731-1743.
  • Rochex, A., Lebeault, J.M. (2007). Effects of nutrients on biofilm formation and detachment of a Pseudomonas putida strain isolated from a paper machine. Water Research, 41(13): 2885-2892.
  • Rossi, C., Serio, A., Chaves-López, C., Anniballi, F., Auricchio, B., Goffredo, E., Paparella, A. (2018). Biofilm formation, pigment production and motility in Pseudomonas spp. isolated from the dairy industry. Food Control, 86: 241-248.
  • Sadekuzzaman, M., Yang, S., Mizan, M. F. R., Ha, S. D. (2015). Current and recent advanced strategies for combating biofilms. Comprehensive Reviews in Food Science and Food Safety, 14(4): 491-509.
  • Shrout, J. D., Tolker-Nielsen, T., Givskov, M., Parsek, M. R. (2011). The contribution of cell-cell signaling and motility to bacterial biofilm formation. MRS Bulletin, 36(5): 367-373.
  • Siboni, N., Lidor, M., Kramarsky-Winter, E., Kushmaro, A. (2007). Conditioning film and initial biofilm formation on ceramics tiles in the marine environment. FEMS Microbiology Letters, 274(1): 24-29.
  • Simões, M., Simões, L. C., Vieira, M. J. (2010). A review of current and emergent biofilm control strategies. LWT-Food Science and Technology, 43(4): 573-583.
  • Srey, S., Jahid, I. K., Ha, S. D. (2013). Biofilm formation in food industries: a food safety concern. Food Control, 31(2): 572-585.
  • Téllez, S. (2010). Biofilms and their impact on food industry. VISAVET Outreach Journal. https://www.visavet.es/en/articles/biofilms-impact-food-industry.php
  • Torres, C. E., Lenon, G., Craperi, D., Wilting, R., Blanco, Á. (2011). Enzymatic treatment for preventing biofilm formation in the paper industry. Applied Microbiology and Biotechnology, 92(1): 95-103.
  • Toyofuku, M., Inaba, T., Kiyokawa, T., Obana, N., Yawata, Y., Nomura, N. (2016). Environmental factors that shape biofilm formation. Bioscience, Biotechnology and Biochemistry, 80(1): 7-12.
  • Tuson, H. H., Weibel, D. B. (2013). Bacteria–surface interactions. Soft Matter, 9(17): 4368-4380. Van Houdt, R., Michiels, C. W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, 109(4): 1117-1131.
  • Winkelstroter, L.K. (2015). Microbial Biofilms: The Challenge of Food Industry. Biochemistry and Molecular Biology Journal, 1(1:5): 1-3 DOI: 10.21767/2471-8084.100005.
  • Wirtanen, G., Husmark, U., Mattila-Sandholm, T. (1996). Microbial evaluation of the biotransfer potential from surfaces with Bacillus biofilms after rinsing and cleaning procedures in closed food-processing systems. Journal of Food Protection, 59(7): 727-733.
  • Zhao, X., Zhao, F., Wang, J., Zhong, N. (2017). Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Advances, 7(58): 36670-36683.
There are 47 citations in total.

Details

Primary Language English
Journal Section Derleme
Authors

Kefyalew Chırkena This is me

Beyza Ulusoy

Canan Hecer

Publication Date July 27, 2019
Published in Issue Year 2019 Volume: 3 Issue: 2

Cite

APA Chırkena, K., Ulusoy, B., & Hecer, C. (2019). Bacterial Biofilms: Formation, Properties and Its Prevention in Food Industry. Aydın Gastronomy, 3(2), 87-100.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International license (CC-BY-NC 4.0)