Review
BibTex RIS Cite

Microencapsulation and Its Uses in Food Industry

Year 2021, Volume: 5 Issue: 1, 81 - 89, 26.01.2021

Abstract

Microencapsulation is a packaging technology in which solid, liquid and gaseous active substances (aroma substances, microorganisms, vitamins and minerals etc.) are coated with coating material in micro dimensions. Microencapsulation is used in many fields such as pharmaceutical, agricultural, medical, cosmetic, chemical and food industries. In food industry, microencapsulation is used for protecting the coated material from external factors such as temperature, humidity and microorganism, improving the functional properties of the active substance, extending its shelf life, preserving its functionality, masking unwanted taste and aroma substances, increasing the application area of the active substance and providing the optimal dose. In the microencapsulation technology, organic or inorganic coating materials such as carbohydrates (starch, maltodextrin, sucrose and maltose), proteins (gelatin, whey proteins, casein and caseinates) and gums (gam arabic) are used. In microencapsulation, techniques such as spray drying, spray cooling, extrusion, lyophilization, coacervation are used to coat the active substance with coating material. This article is aims to give information about the use of microencapsulation technique, some coating materials and methods in food industry.

References

  • Açu, M., Yerlikay, O., & Kınık, Ö. (2014). Mikroenkapsülayon ve süt teknolojisindeki yeri. Akademik Gıda, 12, 97-107.
  • Azeredo, H.M.C. (2005). Encapsulação: Aplicação à tecnologia de Alimentos. Alimentos e Nutrição, 16, 89-97.
  • Barbosa, M.S., Todorov, S.D., Jurkiewicz, C.H., & Franco, B.D. (2015). Bacteriocin production by Lactobacillus curvatus MBSa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes. Food Control, 47, 147-153.
  • Bilenler, T., Karabulut, I., & Candogan, K. (2017). Effects of encapsulated starter cultures on microbial and physicochemical properties of traditionally produced and heat treated sausages (sucuks). LWT-Food Science and Technology, 75, 425-433. https://doi.org/10.3153/FH19023
  • Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: from laboratory scale to industrial applications. Journal of Food Engineering, 104, 467-483. https://doi.org/10.1016/j.jfoodeng.2010.12.031
  • Chen, G., & Wang, W. (2007). Role o f freeze drying in nanotechnology. Journal Drying Technology. 25, 29-35. https://doi.org/10.1080/07373930601161179
  • Desai, K.G.H., & Park, H.J. (2005). Recent developments in microencapsulation of food ingredients. Dry Technol. 23, 1361-1394.
  • Dias, M.I., Ferreira, I.C.F.R., & Barreiro, M.F. (2015). Microencapsulation of bioactives for food applications. Food Function, 6, 1035-1052. https://doi.org/10.1039/C4FO01175A FAO/WHO. (2001). Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria. Food and Agriculture Organization of the United Nations and World Health Organization Expert Consultation Report 2001.
  • Favaro-Trindade, C.S., & De Pinho, S.C. (2008). Revisão : Microencapsulação de ingredientes alimentícios. Brazilian Journal of Food Technology, 11, 103-112.
  • Fernandes, A., Antonio, A.L., Oliveira, M.B.P.P., Martins, A., & Ferreira, I.C.F.R. (2012). Effect of gamma and electron beam irradiation on the physico-chemical and nutritional properties of mushrooms: A review. Food Chemistry. 135, 641-650. https://doi.org/10.1016/j.foodchem.2012.04.136
  • Freitas, S., Merkle, H.P., & Gander, B. (2005). Microencapsulation by solvent extraction/evaporation: reviewing the state o f the art o f microsphere preparation process technology. J Control Release. 102, 313-332.
  • Fritzen-Freire, C.B., Prudencio, E.S., Amboni, R.D.M.C., Pinto, S.S., Murakami, A.N.N., & Murakami, F.S. (2012). Microencapsulation of Bifidobacteria by spray drying in the presence of prebiotics. Food Res Int. 45, 306-312.
  • Gamboa, O.D., Gonçalves, L.G., & Grosso, C.F. (2011). Microencapsulation of tocopherols in lipid matrix by spray chilling method. Procedia Food Sci. 1, 1732-1739.
  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res Int. 40, 1107-1121.
  • Gibbs, B.F., Kermasha, S., Alli, I., & Mulligan, C.N. (1999). Encapsulation in the food industry: A review. Int J Food Sci Nutr. 50, 213-224.
  • Gouin, S. (2004). Microencapsulation: Industrial appraisal of existing technologies and trends. Trends Food Sci Technol. 15, 330-347.
  • Jackson, L.S., & Lee, K. (1991). Microencapsulation and the food industry. Lebensm Wiss Technol. 24, 289-297.
  • Khan, M.I., Arshad, M.S., Anjum, F.M., Sameen, A., Aneeq-Ur-Rehman., & Gill, W.T. (2011). Meat as a functional food with special reference to probiotic sausages. Food Res Int. 44, 3125-3133.
  • Kınık, Ö., Kavas, G., & Yılmaz, E. (2003). Mikroenkapsülasyon tekniği ve süt teknolojindeki kullanım olanakları. Gıda. 28, 401-407.
  • Koç, M., Sakin, M. & Kaymak-Ertekin, F. (2010). Mikroenkapsülasyon ve gıda teknolojisinde kullanımı. Pamukkale Univ Muh Bilim Derg. 16, 77-86.
  • Kwak, H.S., Yang, K.M., & Ahn, J. (2003). Microencapsulated iron form ilk fortification. J Agric Food Chem. 51, 7770-7774.
  • Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release - A review. Int J Food Sci Technol. 41(1), 1-21.
  • Marques, L.G., Silveira, A.M., & Freire, J.T. (2006). Freeze-drying characteristics of tropical fruits. Dry Technol. 24, 457-463.
  • Martin, M.J., Lara-Villoslada, F., Ruiz, M.A., & Morales, M.E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innov Food Sci Emerg Technol. 27, 15-25.
  • Mirzaei, H., Pourjafar, H., & Homayouni, A. (2012). Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus La5 and sensory properties in Iranian white brined cheese. Food Chem. 132, 1966-1970.
  • Mortazavian, A., Razavi, S.H., Ehsani, M.R., & Sohrabvandi, S. (2007). Principles and methods of microencapsulation of probiotic microorganisms. Iran J Biotechnol. 5(1), 1-18.
  • Nazzaro, F., Orlando, P., Fratianni, F., & Coppola, R. (2012). Microencapsulation in food science and biotechnology. Curr Opin Biotechnol. 23, 182-186.
  • Oliveira, M.N., Sivieri, K., Alegro, J.H.A., & Saad, S.M.I. (2002). Aspectos tecnológicos de alimentos funcionais contendo probióticos. Rev Brasil Ciências Farm. 32, 1-21.
  • Peker, H., & Arslan, S. (2011). Mikroenkapsülasyon ve süt teknolojisinde kullanım alanları. Akademik Gıda. 9, 70-80.
  • Picot, A., & Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int Dairy J. 14, 505-515.
  • Rathore, S., Desai, P.M., Liew, C.V., Chan, L.W., & Heng, P.W.S. (2013). Microencapsulation of microbial cells. J Food Eng. 116, 369-381.
  • Rivera-Espinoza, Y., & Gallardo-Navarro, Y. (2010). Non-dairy probiotic products. Food Microbiol. 27, 1-11.
  • Rouhi, M., Sohrabvandi, S., & Mortazavian, A.M. (2013). Probiotic Fermented Sausage: Viability of Probiotic Microorganisms and Sensory Characteristics. Crit Rev Food Sci Nutr. 53, 331-348.
  • Sanguansri, P., & Augustin, M.A. (2006). Nanoscale materials development – a food industry perspective. Trends Food Sci Technol. 17, 547-556.
  • Sanz, Y. (2007). Ecological and functional implications of the acid-adaptation ability of Bifidobacterium: A way of selecting improved probiotic strains. Int Dairy J. 17(11), 1284-1289.
  • Sarkar, S. (2010). Approaches for enhancing the viability of probiotics: A review. Br Food J. 112(4), 329-349.
  • Suave, J., Dall’agnol, E.C., Pezzin, A.P.T., Silva, D.A.K., Meier, M.M., & Soldi, V. (2006). Microencapsulação: Inovação em diferentes áreas. Rev Saúde e Ambiente. 7(2), 12-20.
  • Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P., & Kailasapathy, K. (2000). Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol. 62(1-2), 47-55.
  • Wandrey, C., Bartkowiak. A., & Harding, S.E. (2010). Materials for Encapsulation. Zuidam NJ, Nedović VA. eds. Encapsulation technologies for active food ingredients and food processing. Encapsulation Technologies for Active Food Ingredients and Food Processing. Springer. New York Dordrecht Heidelberg London. 31-100.
  • Wang, M., Wang, C., Gao, F., & Guo, M. (2018). Effects of polymerised whey protein-based microencapsulation on survivability of Lactobacillus acidophilus LA-5 and physiochemical properties of yoghurt J. Microencapsulation. 35, 504-512.

Mikroenkapsülasyon ve Gıda Endüstrisinde Kullanım Alanları

Year 2021, Volume: 5 Issue: 1, 81 - 89, 26.01.2021

Abstract

Mikroenkapsülasyon, katı, sıvı ve gaz halindeki aktif maddelerin (aroma maddeleri, mikroorganizmalar, vitaminler ve mineraller vb.) kaplama materyalleri ile mikro boyutlarda kaplanması teknolojisidir. Mikroenkapsülasyon ilaç, tarım, tıp, kozmetik, kimya ve gıda endüstrisi gibi birçok alanda kullanılmaktadır. Gıda endüstrisinde mikroenkapsülasyon, kaplanacak maddeyi sıcaklık, nem ve mikroorganizma gibi dış etkenlerden korumak, aktif maddenin fonksiyonel özelliklerini geliştirmek, raf ömrünü uzatmak, işlevselliğini korumak, istenmeyen tat ve aroma maddelerini maskelemek, aktif maddenin uygulama alanını artırmak ve optimal dozu sağlamak amaçlarıyla kullanılmaktadır. Mikroenkapsülasyon teknolojisinde organik veya inorganik kaplama materyallerinden başta karbonhidratlar (nişasta, maltodekstrin, sakkaroz ve maltoz) olmak üzere proteinler (jelatin, peynir altı suyu proteinleri, kazein ve kazeinatlar gibi proteinler) ve gamlar (gam arabik) kullanılmaktadır. Mikroenkapsülasyonda aktif maddelerin kaplama materyali ile kaplanmasında püskürterek kurutma, püskürterek soğutma, ekstrüzyon, liyofilizasyon, koaservasyon gibi teknikler kullanılmaktadır. Bu makalede mikroenkapsülasyon tekniğinin gıdalarda kullanım amaçları, kullanılan bazı kaplama materyalleri ve kaplama metodları hakkında bilgi verilmesi amaçlanmıştır.

References

  • Açu, M., Yerlikay, O., & Kınık, Ö. (2014). Mikroenkapsülayon ve süt teknolojisindeki yeri. Akademik Gıda, 12, 97-107.
  • Azeredo, H.M.C. (2005). Encapsulação: Aplicação à tecnologia de Alimentos. Alimentos e Nutrição, 16, 89-97.
  • Barbosa, M.S., Todorov, S.D., Jurkiewicz, C.H., & Franco, B.D. (2015). Bacteriocin production by Lactobacillus curvatus MBSa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes. Food Control, 47, 147-153.
  • Bilenler, T., Karabulut, I., & Candogan, K. (2017). Effects of encapsulated starter cultures on microbial and physicochemical properties of traditionally produced and heat treated sausages (sucuks). LWT-Food Science and Technology, 75, 425-433. https://doi.org/10.3153/FH19023
  • Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: from laboratory scale to industrial applications. Journal of Food Engineering, 104, 467-483. https://doi.org/10.1016/j.jfoodeng.2010.12.031
  • Chen, G., & Wang, W. (2007). Role o f freeze drying in nanotechnology. Journal Drying Technology. 25, 29-35. https://doi.org/10.1080/07373930601161179
  • Desai, K.G.H., & Park, H.J. (2005). Recent developments in microencapsulation of food ingredients. Dry Technol. 23, 1361-1394.
  • Dias, M.I., Ferreira, I.C.F.R., & Barreiro, M.F. (2015). Microencapsulation of bioactives for food applications. Food Function, 6, 1035-1052. https://doi.org/10.1039/C4FO01175A FAO/WHO. (2001). Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria. Food and Agriculture Organization of the United Nations and World Health Organization Expert Consultation Report 2001.
  • Favaro-Trindade, C.S., & De Pinho, S.C. (2008). Revisão : Microencapsulação de ingredientes alimentícios. Brazilian Journal of Food Technology, 11, 103-112.
  • Fernandes, A., Antonio, A.L., Oliveira, M.B.P.P., Martins, A., & Ferreira, I.C.F.R. (2012). Effect of gamma and electron beam irradiation on the physico-chemical and nutritional properties of mushrooms: A review. Food Chemistry. 135, 641-650. https://doi.org/10.1016/j.foodchem.2012.04.136
  • Freitas, S., Merkle, H.P., & Gander, B. (2005). Microencapsulation by solvent extraction/evaporation: reviewing the state o f the art o f microsphere preparation process technology. J Control Release. 102, 313-332.
  • Fritzen-Freire, C.B., Prudencio, E.S., Amboni, R.D.M.C., Pinto, S.S., Murakami, A.N.N., & Murakami, F.S. (2012). Microencapsulation of Bifidobacteria by spray drying in the presence of prebiotics. Food Res Int. 45, 306-312.
  • Gamboa, O.D., Gonçalves, L.G., & Grosso, C.F. (2011). Microencapsulation of tocopherols in lipid matrix by spray chilling method. Procedia Food Sci. 1, 1732-1739.
  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res Int. 40, 1107-1121.
  • Gibbs, B.F., Kermasha, S., Alli, I., & Mulligan, C.N. (1999). Encapsulation in the food industry: A review. Int J Food Sci Nutr. 50, 213-224.
  • Gouin, S. (2004). Microencapsulation: Industrial appraisal of existing technologies and trends. Trends Food Sci Technol. 15, 330-347.
  • Jackson, L.S., & Lee, K. (1991). Microencapsulation and the food industry. Lebensm Wiss Technol. 24, 289-297.
  • Khan, M.I., Arshad, M.S., Anjum, F.M., Sameen, A., Aneeq-Ur-Rehman., & Gill, W.T. (2011). Meat as a functional food with special reference to probiotic sausages. Food Res Int. 44, 3125-3133.
  • Kınık, Ö., Kavas, G., & Yılmaz, E. (2003). Mikroenkapsülasyon tekniği ve süt teknolojindeki kullanım olanakları. Gıda. 28, 401-407.
  • Koç, M., Sakin, M. & Kaymak-Ertekin, F. (2010). Mikroenkapsülasyon ve gıda teknolojisinde kullanımı. Pamukkale Univ Muh Bilim Derg. 16, 77-86.
  • Kwak, H.S., Yang, K.M., & Ahn, J. (2003). Microencapsulated iron form ilk fortification. J Agric Food Chem. 51, 7770-7774.
  • Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavour encapsulation and controlled release - A review. Int J Food Sci Technol. 41(1), 1-21.
  • Marques, L.G., Silveira, A.M., & Freire, J.T. (2006). Freeze-drying characteristics of tropical fruits. Dry Technol. 24, 457-463.
  • Martin, M.J., Lara-Villoslada, F., Ruiz, M.A., & Morales, M.E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innov Food Sci Emerg Technol. 27, 15-25.
  • Mirzaei, H., Pourjafar, H., & Homayouni, A. (2012). Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus La5 and sensory properties in Iranian white brined cheese. Food Chem. 132, 1966-1970.
  • Mortazavian, A., Razavi, S.H., Ehsani, M.R., & Sohrabvandi, S. (2007). Principles and methods of microencapsulation of probiotic microorganisms. Iran J Biotechnol. 5(1), 1-18.
  • Nazzaro, F., Orlando, P., Fratianni, F., & Coppola, R. (2012). Microencapsulation in food science and biotechnology. Curr Opin Biotechnol. 23, 182-186.
  • Oliveira, M.N., Sivieri, K., Alegro, J.H.A., & Saad, S.M.I. (2002). Aspectos tecnológicos de alimentos funcionais contendo probióticos. Rev Brasil Ciências Farm. 32, 1-21.
  • Peker, H., & Arslan, S. (2011). Mikroenkapsülasyon ve süt teknolojisinde kullanım alanları. Akademik Gıda. 9, 70-80.
  • Picot, A., & Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int Dairy J. 14, 505-515.
  • Rathore, S., Desai, P.M., Liew, C.V., Chan, L.W., & Heng, P.W.S. (2013). Microencapsulation of microbial cells. J Food Eng. 116, 369-381.
  • Rivera-Espinoza, Y., & Gallardo-Navarro, Y. (2010). Non-dairy probiotic products. Food Microbiol. 27, 1-11.
  • Rouhi, M., Sohrabvandi, S., & Mortazavian, A.M. (2013). Probiotic Fermented Sausage: Viability of Probiotic Microorganisms and Sensory Characteristics. Crit Rev Food Sci Nutr. 53, 331-348.
  • Sanguansri, P., & Augustin, M.A. (2006). Nanoscale materials development – a food industry perspective. Trends Food Sci Technol. 17, 547-556.
  • Sanz, Y. (2007). Ecological and functional implications of the acid-adaptation ability of Bifidobacterium: A way of selecting improved probiotic strains. Int Dairy J. 17(11), 1284-1289.
  • Sarkar, S. (2010). Approaches for enhancing the viability of probiotics: A review. Br Food J. 112(4), 329-349.
  • Suave, J., Dall’agnol, E.C., Pezzin, A.P.T., Silva, D.A.K., Meier, M.M., & Soldi, V. (2006). Microencapsulação: Inovação em diferentes áreas. Rev Saúde e Ambiente. 7(2), 12-20.
  • Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P., & Kailasapathy, K. (2000). Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol. 62(1-2), 47-55.
  • Wandrey, C., Bartkowiak. A., & Harding, S.E. (2010). Materials for Encapsulation. Zuidam NJ, Nedović VA. eds. Encapsulation technologies for active food ingredients and food processing. Encapsulation Technologies for Active Food Ingredients and Food Processing. Springer. New York Dordrecht Heidelberg London. 31-100.
  • Wang, M., Wang, C., Gao, F., & Guo, M. (2018). Effects of polymerised whey protein-based microencapsulation on survivability of Lactobacillus acidophilus LA-5 and physiochemical properties of yoghurt J. Microencapsulation. 35, 504-512.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Derleme
Authors

Sibel Kanat 0000-0002-6181-7239

Göknur Terzi Gülel 0000-0002-0011-0440

Publication Date January 26, 2021
Published in Issue Year 2021 Volume: 5 Issue: 1

Cite

APA Kanat, S., & Terzi Gülel, G. (2021). Mikroenkapsülasyon ve Gıda Endüstrisinde Kullanım Alanları. Aydın Gastronomy, 5(1), 81-89.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution 4.0 International license (CC-BY-NC 4.0)