Review
BibTex RIS Cite

Nanoselüloz: yapısı, çeşitleri ve kullanım alanları

Year 2024, , 133 - 147, 23.04.2024
https://doi.org/10.24011/barofd.1358005

Abstract

Son yıllarda artan çevre bilinci, iklim değişiklikleri ve petrolün tükenmesi, gibi nedenlerden dolayı petrol türevli malzemelerin yerini doğal kaynaklardan elde edilen ve doğada parçalanabilen malzemeler almaya başlamıştır. Dünyada en çok bulunan doğal bir polimer olan selüloz çeşitli kaynaklardan (ağaç, bitki, su yosunu, hayvan, amip, bakteri vb.) elde edilebilmektedir. Öncelikle kağıt olmak üzere pek çok alanda yüzyıllardır kullanılan bir malzeme olan selüloz nanoteknolojinin gelişmesiyle birlikte yeni bir form kazanmış ve Nanoselüloz (NC) adı verilen malzeme ortaya çıkmıştır. Bitki hücre duvarından elde edilebilen doğal bir nanomateryal olan NC öne çıkan yeşil malzemelerden birisidir. NC üretiminde kullanılan kaynaklar fazla ve çok çeşitlidir. Gelecek vaat eden NC’ ler yüksek en-boy oranına sahip olup, selüloza nazaran daha iyi mekanik özelliklere sahiptir. Bunun yanı sıra yenilenebilir bir malzeme olup, biyouyumlu olması da artan çevresel endişeler dolasıyla bu malzemeyi cazip kılmaktadır. İçeriğinde bol miktarda fonksiyonel hidroksil grubu barındırdığından dolayı kimyasal reaksiyonlarla çok geniş bir kullanım alanına sahiptir. Günümüzde özellikle polimer kompozitler içeresine NC takviye edilmeye başlamıştır. Yeni bir biyopolimer kompozit endüstrisinin temelini oluşturacak ideal malzemeler olarak görülen nanoselülozun; selüloz nanokristal (CNC), selüloz nanofibril (CNF) ve bakteriyel nanoselüloz (BC) olmak üzere üç farklı çeşidi bulunmaktadır. Sahip olduğu özellikler nedeniyle geleceğin malzemesi olarak görülen NC’ ler ile ilgili bu derlemede NC çeşitlerinden, avantajlarından ve kullanım alanlarından bahsedilmiştir.

References

  • Abdul Khalil, H. P. S., Bhat, A. H., Ireana Yusra, A. F. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), 963-979. https://doi.org/10.1016/j.carbpol.2011.08.078
  • Akoğlu, A., Gül Karahan, A., Lütfü Çakmakçı, M., ve Çakır, İ. (2010). Bakteriyel Selülozun Özellikleri ve Gıda Sanayisinde Kullanımı. The Journal of Food, 35(2), 127-134.
  • Alves, L., Ferraz, E., Gamelas, J. A. F. (2019). Composites of nanofibrillated cellulose with clay minerals: A review. Advances in Colloid and Interface Science, 272, 101994. https://doi.org/10.1016/j.cis.2019.101994
  • Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., Claro, A. M. (2019). Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Frontiers in Sustainable Food Systems, 3, 429319. https://doi.org/10.3389/FSUFS.2019.00007/BIBTEX
  • Bharimalla, A. K., Deshmukh, S. P., Patil, P. G., Vigneshwaran, N. (2015). Energy Efficient Manufacturing of Nanocellulose by Chemo- and Bio-Mechanical Processes: A Review. World Journal of Nano Science and Engineering, 05(04), 204-212. https://doi.org/10.4236/WJNSE.2015.54021
  • Blanco, A., Monte, M. C., Campano, C., Balea, A., Merayo, N., Negro, C. (2018). Nanocellulose for Industrial Use: Cellulose Nanofibers (CNF), Cellulose Nanocrystals (CNC), and Bacterial Cellulose (BC). Handbook of Nanomaterials for Industrial Applications, 74-126. https://doi.org/10.1016/B978-0-12-813351-4.00005-5
  • Brinchi, L., Cotana, F., Fortunati, E., Kenny, J. M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 94(1), 154-169. https://doi.org/10.1016/J.CARBPOL.2013.01.033
  • Choi, S. M., Rao, K. M., Zo, S. M., Shin, E. J., and Han, S. S. (2022). Bacterial Cellulose and Its Applications. Polymers 2022, Vol. 14, Page 1080, 14(6), 1080. https://doi.org/10.3390/POLYM14061080
  • de Oliveira Barud, H. G., da Silva, R. R., da Silva Barud, H., Tercjak, A., Gutierrez, J., Lustri, W. R., de Oliveira Junior, O. B., Ribeiro, S. J. L. (2016). A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydrate Polymers, 153, 406-420. https://doi.org/10.1016/J.CARBPOL.2016.07.059
  • Dufresne, A. (2012). Nanocellulose: potential reinforcement in composites. S. T. Maya J John (Ed.), Natural Polymers: Volume 2: Nanocomposites (C. 2, ss. 1-32).
  • Dufresne, A. (2013). Nanocellulose: a new ageless bionanomaterial. Materials Today, 16(6), 220-227. https://doi.org/10.1016/j.mattod.2013.06.004
  • Esa, F., Tasirin, S. M., Rahman, N. A. (2014). Overview of Bacterial Cellulose Production and Application. Agriculture and Agricultural Science Procedia, 2, 113-119. https://doi.org/10.1016/j.aaspro.2014.11.017
  • Frone, A. N., Panaitescu, D. M., Donescu, D. (2011). Some Aspects Concerning the Isolation of Cellulose Micro-and Nano-Fibers. Bull., Series B, 73(2).
  • Giese, M., Blusch, L. K., Khan, M. K., MacLachlan, M. J. (2015). Functional Materials from Cellulose-Derived Liquid-Crystal Templates. Angewandte Chemie International Edition, 54(10), 2888-2910. https://doi.org/10.1002/ANIE.201407141
  • Gilbert, H. J., Knox, J. P., Boraston, A. B. (2013). Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Current Opinion in Structural Biology, 23(5), 669-677. https://doi.org/10.1016/j.sbi.2013.05.005
  • Habibi, Y. (2014). Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews, 43(5), 1519-1542. https://doi.org/10.1039/C3CS60204D
  • Ioelovich, M. (2016). Nanocellulose—fabrication, structure, properties, and application in the area of care and cure. Içinde Fabrication and Self-Assembly of Nanobiomaterials (ss. 243-288). Elsevier. https://doi.org/10.1016/B978-0-323-41533-0.00009-X
  • Islam, M. T., Alam, M. M., Patrucco, A., Montarsolo, A., Zoccola, M. (2014). Preparation of Nanocellulose: A Review. https://doi.org/10.14504/ajr.1.5.3, 1(5), 17-23. https://doi.org/10.14504/AJR.1.5.3
  • Isogai, A. (2013). Wood nanocelluloses: Fundamentals and applications as new bio-based nanomaterials. Journal of Wood Science, 59(6), 449-459. https://doi.org/10.1007/S10086-013-1365-Z/FIGURES/5
  • Isogai, A., Saito, T., and Fukuzumi, H. (2011). TEMPO-oxidized cellulose nanofibers. Nanoscale, 3(1), 71-85. https://doi.org/10.1039/C0NR00583E
  • Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., Dorris, A. (2011). Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition, 50(24), 5438-5466. https://doi.org/10.1002/ANIE.201001273
  • Lin, N., Dufresne, A. (2014). Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302-325. https://doi.org/10.1016/j.eurpolymj.2014.07.025
  • Missoum, K., Belgacem, M. N., and Bras, J. (2013). Nanofibrillated Cellulose Surface Modification: A Review. Materials 2013, Vol. 6, Pages 1745-1766, 6(5), 1745-1766. https://doi.org/10.3390/MA6051745
  • Miyashiro, D., Hamano, R., Umemura, K. (2020). A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. Nanomaterials (Basel, Switzerland), 10(2). https://doi.org/10.3390/NANO10020186
  • Moon, R. J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994. https://doi.org/10.1039/C0CS00108B
  • Nasir, M., Hashim, R., Sulaiman, O., Asim, M. (2017). Nanocellulose: Preparation methods and applications. Içinde Cellulose-Reinforced Nanofibre Composites (ss. 261-276). Elsevier. https://doi.org/10.1016/B978-0-08-100957-4.00011-5
  • Nechyporchuk, O., Belgacem, M. N., Bras, J. (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 93, 2-25. https://doi.org/10.1016/j.indcrop.2016.02.016
  • Noremylia, M. B., Hassan, M. Z., Ismail, Z. (2022). Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review. International Journal of Biological Macromolecules, 206, 954-976. https://doi.org/10.1016/J.IJBIOMAC.2022.03.064
  • Özkan, B. Ç., Güner, M. (2021). Ultrasonik Destekli Asit Hidrolizi ile Nanokristalin Selüloz Üretimi. International Journal of Innovative Engineering Applications, 5(2), 101-106. https://doi.org/10.46460/ijiea.946875
  • Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resources Conversion, 1(1), 32-43. https://doi.org/10.1016/j.crcon.2018.05.004
  • Rol, F., Belgacem, M. N., Gandini, A., Bras, J. (2019). Recent advances in surface-modified cellulose nanofibrils. Progress in Polymer Science, 88, 241-264. https://doi.org/10.1016/j.progpolymsci.2018.09.002
  • Salimi, S., Sotudeh-Gharebagh, R., Zarghami, R., Chan, S. Y., Yuen, K. H. (2019). Production of Nanocellulose and Its Applications in Drug Delivery: A Critical Review. ACS Sustainable Chemistry and Engineering, 7(19), 15800-15827.
  • Shi, Z., Zhang, Y., Phillips, G. O., Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545. https://doi.org/10.1016/j.foodhyd.2013.07.012
  • Shoda, M., and Sugano, Y. (2005). Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering, 10(1), 1-8.
  • Tayeb, A. H., Amini, E., Ghasemi, S., Tajvidi, M. (2018). Cellulose Nanomaterials—Binding Properties and Applications: A Review. Molecules 2018, Vol. 23, Page 2684, 23(10), 2684. https://doi.org/10.3390/MOLECULES23102684
  • Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N., Hussin, M. H. (2020). Nanocellulose: From Fundamentals to Advanced Applications. Frontiers in chemistry, 8, 392. https://doi.org/10.3389/fchem.2020.00392
  • Vandamme, E. J., De Baets, S., Vanbaelen, A., Joris, K., De Wulf, P. (1998). Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability, 59(1-3), 93-99. https://doi.org/10.1016/S0141-3910(97)00185-7
  • Wang, J., Tavakoli, J., Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods – A review. Carbohydrate Polymers, 219, 63-76. https://doi.org/10.1016/j.carbpol.2019.05.008
  • Xue, Y., Mou, Z., Xiao, H. (2017). Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale, 9(39), 14758-14781. https://doi.org/10.1039/C7NR04994C
  • Yang, B., Zhang, M., Lu, Z., Tan, J., Luo, J., Song, S., Ding, X., Wang, L., Lu, P., Zhang, Q. (2019). Comparative study of aramid nanofiber (ANF) and cellulose nanofiber (CNF). Carbohydrate Polymers, 208, 372-381. https://doi.org/10.1016/j.carbpol.2018.12.086
  • Yi, T., Zhao, H., Mo, Q., Pan, D., Liu, Y., Huang, L., Xu, H., Hu, B., Song, H. (2020). From Cellulose to Cellulose Nanofibrils—A Comprehensive Review of the Preparation and Modification of Cellulose Nanofibrils. Materials 2020, Vol. 13, Page 5062, 13(22), 5062. https://doi.org/10.3390/MA13225062

Nanocellulose: structure, types, and applications

Year 2024, , 133 - 147, 23.04.2024
https://doi.org/10.24011/barofd.1358005

Abstract

In recent years, due to increasing environmental awareness, climate changes, and oil depletion, petroleum-derived materials have begun to be replaced by materials obtained from natural resources and biodegradable. Cellulose, the most abundant natural polymer in the world, can be obtained from various sources (trees, plants, algae, animals, amoeba, bacteria, etc.). Cellulose is a material that has been used for centuries in many fields, especially paper. With the development of nanotechnology, cellulose gained a new form, and the material called Nanocellulose (NC). NC, a natural nanomaterial obtained from the plant cell wall, is one of the prominent green materials. A great variety of resources are used in NC production. Promising NCs have a high aspect ratio and better mechanical properties than cellulose. NC contains plenty of functional hydroxyl groups. In this way, it has a wide range of uses through chemical reactions. Nowadays, NCs have started to be used as reinforcement materials, especially in polymer composites. Nanocellulose is an ideal material that will form the basis of a new biopolymer composite industry. There are three different types: crystalline nanocellulose (CNC), cellulose nanofibril (CNF), and bacterial nanocellulose (BC). In this review about NCs, which are seen as future materials due to their properties, NC types, advantages, and usage areas are mentioned.

References

  • Abdul Khalil, H. P. S., Bhat, A. H., Ireana Yusra, A. F. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), 963-979. https://doi.org/10.1016/j.carbpol.2011.08.078
  • Akoğlu, A., Gül Karahan, A., Lütfü Çakmakçı, M., ve Çakır, İ. (2010). Bakteriyel Selülozun Özellikleri ve Gıda Sanayisinde Kullanımı. The Journal of Food, 35(2), 127-134.
  • Alves, L., Ferraz, E., Gamelas, J. A. F. (2019). Composites of nanofibrillated cellulose with clay minerals: A review. Advances in Colloid and Interface Science, 272, 101994. https://doi.org/10.1016/j.cis.2019.101994
  • Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., Claro, A. M. (2019). Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Frontiers in Sustainable Food Systems, 3, 429319. https://doi.org/10.3389/FSUFS.2019.00007/BIBTEX
  • Bharimalla, A. K., Deshmukh, S. P., Patil, P. G., Vigneshwaran, N. (2015). Energy Efficient Manufacturing of Nanocellulose by Chemo- and Bio-Mechanical Processes: A Review. World Journal of Nano Science and Engineering, 05(04), 204-212. https://doi.org/10.4236/WJNSE.2015.54021
  • Blanco, A., Monte, M. C., Campano, C., Balea, A., Merayo, N., Negro, C. (2018). Nanocellulose for Industrial Use: Cellulose Nanofibers (CNF), Cellulose Nanocrystals (CNC), and Bacterial Cellulose (BC). Handbook of Nanomaterials for Industrial Applications, 74-126. https://doi.org/10.1016/B978-0-12-813351-4.00005-5
  • Brinchi, L., Cotana, F., Fortunati, E., Kenny, J. M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 94(1), 154-169. https://doi.org/10.1016/J.CARBPOL.2013.01.033
  • Choi, S. M., Rao, K. M., Zo, S. M., Shin, E. J., and Han, S. S. (2022). Bacterial Cellulose and Its Applications. Polymers 2022, Vol. 14, Page 1080, 14(6), 1080. https://doi.org/10.3390/POLYM14061080
  • de Oliveira Barud, H. G., da Silva, R. R., da Silva Barud, H., Tercjak, A., Gutierrez, J., Lustri, W. R., de Oliveira Junior, O. B., Ribeiro, S. J. L. (2016). A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydrate Polymers, 153, 406-420. https://doi.org/10.1016/J.CARBPOL.2016.07.059
  • Dufresne, A. (2012). Nanocellulose: potential reinforcement in composites. S. T. Maya J John (Ed.), Natural Polymers: Volume 2: Nanocomposites (C. 2, ss. 1-32).
  • Dufresne, A. (2013). Nanocellulose: a new ageless bionanomaterial. Materials Today, 16(6), 220-227. https://doi.org/10.1016/j.mattod.2013.06.004
  • Esa, F., Tasirin, S. M., Rahman, N. A. (2014). Overview of Bacterial Cellulose Production and Application. Agriculture and Agricultural Science Procedia, 2, 113-119. https://doi.org/10.1016/j.aaspro.2014.11.017
  • Frone, A. N., Panaitescu, D. M., Donescu, D. (2011). Some Aspects Concerning the Isolation of Cellulose Micro-and Nano-Fibers. Bull., Series B, 73(2).
  • Giese, M., Blusch, L. K., Khan, M. K., MacLachlan, M. J. (2015). Functional Materials from Cellulose-Derived Liquid-Crystal Templates. Angewandte Chemie International Edition, 54(10), 2888-2910. https://doi.org/10.1002/ANIE.201407141
  • Gilbert, H. J., Knox, J. P., Boraston, A. B. (2013). Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Current Opinion in Structural Biology, 23(5), 669-677. https://doi.org/10.1016/j.sbi.2013.05.005
  • Habibi, Y. (2014). Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews, 43(5), 1519-1542. https://doi.org/10.1039/C3CS60204D
  • Ioelovich, M. (2016). Nanocellulose—fabrication, structure, properties, and application in the area of care and cure. Içinde Fabrication and Self-Assembly of Nanobiomaterials (ss. 243-288). Elsevier. https://doi.org/10.1016/B978-0-323-41533-0.00009-X
  • Islam, M. T., Alam, M. M., Patrucco, A., Montarsolo, A., Zoccola, M. (2014). Preparation of Nanocellulose: A Review. https://doi.org/10.14504/ajr.1.5.3, 1(5), 17-23. https://doi.org/10.14504/AJR.1.5.3
  • Isogai, A. (2013). Wood nanocelluloses: Fundamentals and applications as new bio-based nanomaterials. Journal of Wood Science, 59(6), 449-459. https://doi.org/10.1007/S10086-013-1365-Z/FIGURES/5
  • Isogai, A., Saito, T., and Fukuzumi, H. (2011). TEMPO-oxidized cellulose nanofibers. Nanoscale, 3(1), 71-85. https://doi.org/10.1039/C0NR00583E
  • Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., Dorris, A. (2011). Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition, 50(24), 5438-5466. https://doi.org/10.1002/ANIE.201001273
  • Lin, N., Dufresne, A. (2014). Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302-325. https://doi.org/10.1016/j.eurpolymj.2014.07.025
  • Missoum, K., Belgacem, M. N., and Bras, J. (2013). Nanofibrillated Cellulose Surface Modification: A Review. Materials 2013, Vol. 6, Pages 1745-1766, 6(5), 1745-1766. https://doi.org/10.3390/MA6051745
  • Miyashiro, D., Hamano, R., Umemura, K. (2020). A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. Nanomaterials (Basel, Switzerland), 10(2). https://doi.org/10.3390/NANO10020186
  • Moon, R. J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994. https://doi.org/10.1039/C0CS00108B
  • Nasir, M., Hashim, R., Sulaiman, O., Asim, M. (2017). Nanocellulose: Preparation methods and applications. Içinde Cellulose-Reinforced Nanofibre Composites (ss. 261-276). Elsevier. https://doi.org/10.1016/B978-0-08-100957-4.00011-5
  • Nechyporchuk, O., Belgacem, M. N., Bras, J. (2016). Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 93, 2-25. https://doi.org/10.1016/j.indcrop.2016.02.016
  • Noremylia, M. B., Hassan, M. Z., Ismail, Z. (2022). Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review. International Journal of Biological Macromolecules, 206, 954-976. https://doi.org/10.1016/J.IJBIOMAC.2022.03.064
  • Özkan, B. Ç., Güner, M. (2021). Ultrasonik Destekli Asit Hidrolizi ile Nanokristalin Selüloz Üretimi. International Journal of Innovative Engineering Applications, 5(2), 101-106. https://doi.org/10.46460/ijiea.946875
  • Phanthong, P., Reubroycharoen, P., Hao, X., Xu, G., Abudula, A., Guan, G. (2018). Nanocellulose: Extraction and application. Carbon Resources Conversion, 1(1), 32-43. https://doi.org/10.1016/j.crcon.2018.05.004
  • Rol, F., Belgacem, M. N., Gandini, A., Bras, J. (2019). Recent advances in surface-modified cellulose nanofibrils. Progress in Polymer Science, 88, 241-264. https://doi.org/10.1016/j.progpolymsci.2018.09.002
  • Salimi, S., Sotudeh-Gharebagh, R., Zarghami, R., Chan, S. Y., Yuen, K. H. (2019). Production of Nanocellulose and Its Applications in Drug Delivery: A Critical Review. ACS Sustainable Chemistry and Engineering, 7(19), 15800-15827.
  • Shi, Z., Zhang, Y., Phillips, G. O., Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539-545. https://doi.org/10.1016/j.foodhyd.2013.07.012
  • Shoda, M., and Sugano, Y. (2005). Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering, 10(1), 1-8.
  • Tayeb, A. H., Amini, E., Ghasemi, S., Tajvidi, M. (2018). Cellulose Nanomaterials—Binding Properties and Applications: A Review. Molecules 2018, Vol. 23, Page 2684, 23(10), 2684. https://doi.org/10.3390/MOLECULES23102684
  • Trache, D., Tarchoun, A. F., Derradji, M., Hamidon, T. S., Masruchin, N., Brosse, N., Hussin, M. H. (2020). Nanocellulose: From Fundamentals to Advanced Applications. Frontiers in chemistry, 8, 392. https://doi.org/10.3389/fchem.2020.00392
  • Vandamme, E. J., De Baets, S., Vanbaelen, A., Joris, K., De Wulf, P. (1998). Improved production of bacterial cellulose and its application potential. Polymer Degradation and Stability, 59(1-3), 93-99. https://doi.org/10.1016/S0141-3910(97)00185-7
  • Wang, J., Tavakoli, J., Tang, Y. (2019). Bacterial cellulose production, properties and applications with different culture methods – A review. Carbohydrate Polymers, 219, 63-76. https://doi.org/10.1016/j.carbpol.2019.05.008
  • Xue, Y., Mou, Z., Xiao, H. (2017). Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale, 9(39), 14758-14781. https://doi.org/10.1039/C7NR04994C
  • Yang, B., Zhang, M., Lu, Z., Tan, J., Luo, J., Song, S., Ding, X., Wang, L., Lu, P., Zhang, Q. (2019). Comparative study of aramid nanofiber (ANF) and cellulose nanofiber (CNF). Carbohydrate Polymers, 208, 372-381. https://doi.org/10.1016/j.carbpol.2018.12.086
  • Yi, T., Zhao, H., Mo, Q., Pan, D., Liu, Y., Huang, L., Xu, H., Hu, B., Song, H. (2020). From Cellulose to Cellulose Nanofibrils—A Comprehensive Review of the Preparation and Modification of Cellulose Nanofibrils. Materials 2020, Vol. 13, Page 5062, 13(22), 5062. https://doi.org/10.3390/MA13225062
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Forest Products Chemistry
Journal Section Review Articles and Editorials
Authors

Gülyaz Al 0000-0003-2347-4981

Deniz Aydemir 0000-0002-7484-2126

Early Pub Date April 5, 2024
Publication Date April 23, 2024
Published in Issue Year 2024

Cite

APA Al, G., & Aydemir, D. (2024). Nanoselüloz: yapısı, çeşitleri ve kullanım alanları. Bartın Orman Fakültesi Dergisi, 26(2), 133-147. https://doi.org/10.24011/barofd.1358005


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Tel: +90 (378) 223 5094, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com