Research Article
BibTex RIS Cite

Investigation of the Phenolic Contents and Antioxidant Activities of Some Natural Edible Mushroom Species

Year 2024, Volume: 26 Issue: 1, 7 - 12, 29.02.2024
https://doi.org/10.24011/barofd.1386438

Abstract

In recent years, edible mushroom species have become a part of the daily human diet due to their high protein content. These mushrooms have also gained popularity in alternative medicine practices due to their chemical composition and antioxidant properties. This study aimed to determine the biologically important antioxidant activities and total phenolic content of four different mushroom species, each with its unique appearance and habitat: Amanita caesarea (Aca), Clitocybe geotropa (Cge), Cordyceps militaris (Cmi) and Lentinula edodes (Led). The antioxidant activities of the mushroom species were determined using the DPPH radical scavenging method, and the percentage inhibition and IC50 values were reported. The analysis of inhibition values at various concentrations revealed that both Cmi and Aca mushrooms demonstrated higher antioxidant activity when compared to Led and Cge mushrooms across all tested concentrations. Moreover, the phenolic content of the methanolic extracts, quantified in gallic acid equivalents (GAE), were determined to be 37.04±0.35, 52.04±0.41, 19.33±0.11, and 21.63±0.15 mg GAE/g for Cmi, Aca, Led, and Cge, respectively. In conclusion, a direct correlation was noted between the overall phenolic content and the antioxidant activity of the various mushroom species.

References

  • Bakır, T.K., Karadeniz, M., Unal, S. (2018). Investigation of antioxidant activities of Pleurotus ostreatus stored at different temperatures. Food science & nutrition, 6(4), 1040-1044
  • Barido, F., Jang, A., Pak, J., Kim, D. (2020). Investigation of taste-related compounds and antioxidative profiles of retorted samgyetang made from fresh and dried cordyceps militaris mushrooms. Food Science of Animal Resources, 40(5), 772-784.
  • Bisen, P., Baghel, R., Sanodiya, B., Thakur, G., Prasad, G. (2010). Lentinus edodes: a macrofungus with pharmacological activities. Current Medicinal Chemistry, 17(22), 2419-2430.
  • Bozdoğan A., Ulukanlı Z., Bozok F., Eker T., Doğan H.H., Büyükalaca S., (2018), Antioxidant Potential of Lactarius deliciosus and Pleurotus ostreatus from Amanos Mountains. Adv. Life Sci., 5(3): 113-120.
  • Chandler, S.F., Dodds, J.H. (1983). The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasodine in callus cultures of Solanum laciniatum. Plant Cell Reports, 2(4), 205-208.
  • Ciric, M., Dabetic, N., Todorovic, V., Đuriš, J., Vidović, B. (2020). Beta-glucan content and antioxidant activities of mushroom-derived food supplements. Journal of the Serbian Chemical Society, 85(4), 439-451.
  • Doğan, H. H., Akbaş, G. (2013). Biological activity and fatty acid composition of Caesar's mushroom. Pharmaceutical biology, 51(7), 863-871.
  • Frankel, E.N., Meyer, A.S. (2000). The problems of using one dimensional methods to evaluate multifunctional food and biological antioxidants. Journal of the Science of Food and Agriculture, 80(13), 1925-1941.
  • Gülçin, İ., Büyükokuroǧlu, M. E., Oktay, M., Küfrevioǧlu, Ö. İ. (2003). Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe. Journal of Ethnopharmacology, 86(1), 51-58.
  • Hu, W., Li, Z., Wang, W., Song, M., Dong, R., Zhou, Y., Li, Y., Wang, D. (2021). Structural characterization of polysaccharide purified from Amanita caesarea and its pharmacological basis for application in alzheimer's Joshi, M., Sagar, A., Kanwar, S. S., Singh, S. (2019). Anticancer, antibacterial and antioxidant activities of Cordyceps militaris. Indian Journal of Experimental Biology, 57, 15-20
  • Kim, M.Y., Seguin, P., Ahn, J.K., Kim, J.J., Chun, S.C., Kim, E.H., Seo, S.H., Kang, E.Y., Kim, S.L., Park, Y.J., Ro, H.M., Chung, I.M. (2008). Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. Journal of Agricultural and Food Chemistry, 56(16), 7265-7270.
  • Kozarski, M., Klaus, A., Jakovljevic, D., Todorovic, N., Vunduk, J., Petrović, P., Niksic, M., Vrvic, M.M., Van Griensven, L. (2015). Antioxidants of edible mushrooms. Molecules, 20(10), 19489-19525.
  • Lee, D.H., Kim, J. H., Park, J.S., Choi, Y.J., Lee, J.S. (2004). Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum. Peptides, 25(4), 621-627.
  • Li, Z., Chen, X., Lu, W., Zhang, S., Guan, X., Li, Z., Wang, D. (2017). Anti-oxidative stress activity is essential for Amanita caesarea mediated neuroprotection on glutamate-induced apoptotic ht22 cells and an alzheimer’s disease mouse model. International Journal of Molecular Sciences, 18(8), 1623.
  • Petrović, J., Stojković, D., Reis, F.S., Barros, L., Glamočlija, J., Ćirić, A., Ferreira, I.C.F.R., Soković, M. (2014). Study on chemical, bioactive and food preserving properties of Laetiporus sulphureus (Bull.: Fr.) Murr. Food & Function, 5(7), 1441-1451.
  • Reis, F.S., Martins, A., Vasconcelos, M.H., Morales, P. ve Ferreira, I.C.F.R. (2017). Functional Foods Based on Extracts or Compounds Derived from Mushrooms. Trends Food Sci. Technol., 66 48-62.
  • Sarikurkcu, C., Tepe, B., Semiz, D. K., & Solak, M. H. (2010). Evaluation of metal concentration and antioxidant activity of three edible mushrooms from Mugla, Turkey. Food and Chemical Toxicology, 48(5), 1230-1233.
  • Sevindik, M., Akgül, H., Selamoglu, Z., Braidy, N. (2020). Antioxidant and antigenotoxic potential of infundibulicybe geotropa mushroom collected from northwestern Turkey. Oxidative Medicine and Cellular Longevity, 2020 (Special Issue), 1-8.
  • Slinkard, K., Singleton, V.L. (1977). Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55.
  • Smolskaite, L., Venskutonis, P.R., Talou, T. (2015). Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT Food Science and Technology, 60, 462-471.
  • Turfan, N., Pekşen, A., Kibar, B., Ünal, S. (2018). Determination of nutritional and bioactive properties in some selected wild growing and cultivated mushrooms from Turkey. Acta Scientiarum Polonorum Hortorum Cultus, 17(3), 57-72.
  • Wu, F., Wang, H., Chen, Q., Pang, X., Hao, J., Yin, L., Zhang, X. (2023). Lignin promotes mycelial growth and accumulation of polyphenols and ergosterol in Lentinula edodes. Journal of Fungi, 9(2), 237.

Doğal Tüketilebilir Bazı Mantar Türlerinin Fenolik İçeriklerinin ve Antioksidan Aktivitelerinin Araştırılması

Year 2024, Volume: 26 Issue: 1, 7 - 12, 29.02.2024
https://doi.org/10.24011/barofd.1386438

Abstract

Son yıllarda yenilebilir mantar türleri, yüksek protein içeriğinden dolayı günlük insan beslenmesinin bir parçası haline gelmiştir. Bu mantarlar kimyasal bileşimleri ve antioksidan özellikleri nedeniyle alternatif tıp uygulamalarında da popülerlik kazanmıştır. Bu çalışma, her biri kendine özgü görünüm ve yaşam ortamına sahip dört farklı mantar türünün biyolojik olarak önemli antioksidan aktivitelerini ve toplam fenolik içeriğini belirlemeyi amaçlamıştır: Amanita caesarea (Aca), Clitocybe geotropa (Cge), Cordyceps militaris (Cmi) ve Lentinula edodes (Led). Mantar türlerinin antioksidan aktiviteleri DPPH radikal süpürme yöntemi kullanılarak belirlenmiş ve yüzde inhibisyon ve IC50 değerleri rapor edilmiştir. Farklı konsantrasyonlarda elde edilen inhibisyon değerlerine göre Cmi ve Aca mantarlarının her konsantrasyonda Led ve Cge mantarlarına göre daha yüksek antioksidan aktivite sergilediği tespit edilmiştir. Ayrıca, metanolik özütlerin fenolik içeriği galik asit eşdeğerleri (GAE) cinsinden belirlenmiş olup, Cmi için 37.04±0.35, Aca için 52.04±0.41, Led için 19.33±0.11 ve Cge için 21.63±0.15 mg GAE/g olarak tespit edilmiştir. Sonuç olarak mantar türlerinin toplam fenolik içeriği ile antioksidan aktivitesi arasında doğrusal bir ilişki gözlendi.

References

  • Bakır, T.K., Karadeniz, M., Unal, S. (2018). Investigation of antioxidant activities of Pleurotus ostreatus stored at different temperatures. Food science & nutrition, 6(4), 1040-1044
  • Barido, F., Jang, A., Pak, J., Kim, D. (2020). Investigation of taste-related compounds and antioxidative profiles of retorted samgyetang made from fresh and dried cordyceps militaris mushrooms. Food Science of Animal Resources, 40(5), 772-784.
  • Bisen, P., Baghel, R., Sanodiya, B., Thakur, G., Prasad, G. (2010). Lentinus edodes: a macrofungus with pharmacological activities. Current Medicinal Chemistry, 17(22), 2419-2430.
  • Bozdoğan A., Ulukanlı Z., Bozok F., Eker T., Doğan H.H., Büyükalaca S., (2018), Antioxidant Potential of Lactarius deliciosus and Pleurotus ostreatus from Amanos Mountains. Adv. Life Sci., 5(3): 113-120.
  • Chandler, S.F., Dodds, J.H. (1983). The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasodine in callus cultures of Solanum laciniatum. Plant Cell Reports, 2(4), 205-208.
  • Ciric, M., Dabetic, N., Todorovic, V., Đuriš, J., Vidović, B. (2020). Beta-glucan content and antioxidant activities of mushroom-derived food supplements. Journal of the Serbian Chemical Society, 85(4), 439-451.
  • Doğan, H. H., Akbaş, G. (2013). Biological activity and fatty acid composition of Caesar's mushroom. Pharmaceutical biology, 51(7), 863-871.
  • Frankel, E.N., Meyer, A.S. (2000). The problems of using one dimensional methods to evaluate multifunctional food and biological antioxidants. Journal of the Science of Food and Agriculture, 80(13), 1925-1941.
  • Gülçin, İ., Büyükokuroǧlu, M. E., Oktay, M., Küfrevioǧlu, Ö. İ. (2003). Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe. Journal of Ethnopharmacology, 86(1), 51-58.
  • Hu, W., Li, Z., Wang, W., Song, M., Dong, R., Zhou, Y., Li, Y., Wang, D. (2021). Structural characterization of polysaccharide purified from Amanita caesarea and its pharmacological basis for application in alzheimer's Joshi, M., Sagar, A., Kanwar, S. S., Singh, S. (2019). Anticancer, antibacterial and antioxidant activities of Cordyceps militaris. Indian Journal of Experimental Biology, 57, 15-20
  • Kim, M.Y., Seguin, P., Ahn, J.K., Kim, J.J., Chun, S.C., Kim, E.H., Seo, S.H., Kang, E.Y., Kim, S.L., Park, Y.J., Ro, H.M., Chung, I.M. (2008). Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. Journal of Agricultural and Food Chemistry, 56(16), 7265-7270.
  • Kozarski, M., Klaus, A., Jakovljevic, D., Todorovic, N., Vunduk, J., Petrović, P., Niksic, M., Vrvic, M.M., Van Griensven, L. (2015). Antioxidants of edible mushrooms. Molecules, 20(10), 19489-19525.
  • Lee, D.H., Kim, J. H., Park, J.S., Choi, Y.J., Lee, J.S. (2004). Isolation and characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum. Peptides, 25(4), 621-627.
  • Li, Z., Chen, X., Lu, W., Zhang, S., Guan, X., Li, Z., Wang, D. (2017). Anti-oxidative stress activity is essential for Amanita caesarea mediated neuroprotection on glutamate-induced apoptotic ht22 cells and an alzheimer’s disease mouse model. International Journal of Molecular Sciences, 18(8), 1623.
  • Petrović, J., Stojković, D., Reis, F.S., Barros, L., Glamočlija, J., Ćirić, A., Ferreira, I.C.F.R., Soković, M. (2014). Study on chemical, bioactive and food preserving properties of Laetiporus sulphureus (Bull.: Fr.) Murr. Food & Function, 5(7), 1441-1451.
  • Reis, F.S., Martins, A., Vasconcelos, M.H., Morales, P. ve Ferreira, I.C.F.R. (2017). Functional Foods Based on Extracts or Compounds Derived from Mushrooms. Trends Food Sci. Technol., 66 48-62.
  • Sarikurkcu, C., Tepe, B., Semiz, D. K., & Solak, M. H. (2010). Evaluation of metal concentration and antioxidant activity of three edible mushrooms from Mugla, Turkey. Food and Chemical Toxicology, 48(5), 1230-1233.
  • Sevindik, M., Akgül, H., Selamoglu, Z., Braidy, N. (2020). Antioxidant and antigenotoxic potential of infundibulicybe geotropa mushroom collected from northwestern Turkey. Oxidative Medicine and Cellular Longevity, 2020 (Special Issue), 1-8.
  • Slinkard, K., Singleton, V.L. (1977). Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55.
  • Smolskaite, L., Venskutonis, P.R., Talou, T. (2015). Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT Food Science and Technology, 60, 462-471.
  • Turfan, N., Pekşen, A., Kibar, B., Ünal, S. (2018). Determination of nutritional and bioactive properties in some selected wild growing and cultivated mushrooms from Turkey. Acta Scientiarum Polonorum Hortorum Cultus, 17(3), 57-72.
  • Wu, F., Wang, H., Chen, Q., Pang, X., Hao, J., Yin, L., Zhang, X. (2023). Lignin promotes mycelial growth and accumulation of polyphenols and ergosterol in Lentinula edodes. Journal of Fungi, 9(2), 237.
There are 22 citations in total.

Details

Primary Language English
Subjects Forestry Sciences (Other)
Journal Section Research Articles
Authors

Mertcan Karadeniz 0000-0002-3627-9424

Temel Kan Bakır 0000-0002-7447-1468

Sabri Ünal 0000-0002-3026-0597

Early Pub Date February 14, 2024
Publication Date February 29, 2024
Submission Date November 5, 2023
Acceptance Date January 24, 2024
Published in Issue Year 2024 Volume: 26 Issue: 1

Cite

APA Karadeniz, M., Bakır, T. K., & Ünal, S. (2024). Investigation of the Phenolic Contents and Antioxidant Activities of Some Natural Edible Mushroom Species. Bartın Orman Fakültesi Dergisi, 26(1), 7-12. https://doi.org/10.24011/barofd.1386438


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com