Research Article
BibTex RIS Cite

Treatment of Rose Processing Wastewater By Sunlight/TiO2 Photocatalysis Process

Year 2020, Volume: 4 Issue: 1, 1 - 6, 31.03.2020
https://doi.org/10.30516/bilgesci.680500

Abstract

The objective of this study was to investigate the photocatalytic treatment of rose processing wastewater by using sunlight and TiO2. Rose processing wastewater contains high concentrations of chemical oxygen demand, high amount of solid matters and dark color. The effect of various operating conditions such as irradiation time, catalyst loading and pH on COD and color removal were determined. The highest color removal and COD removal was found to be 51.7 % and 15.7%, respectively with 2 g/L TiO2 catalyst dose at pH 4. Sunlight was used as an economic irradiation source for photocatalytic treatment of rose processing wastewater.

Supporting Institution

SÜLEYMAN DEMİREL ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMA PROJELERİ KOORDİNASYON BİRİMİ

Project Number

3673-D1-13

Thanks

This research has been financially supported by Scientific Research Project Commission of Süleyman Demirel University, Isparta, Turkey (SDU-BAP Project No: 3673-D1-13). The authors thank the Gülbirlik Company for providing the rose processing wastewater.

References

  • Abella´n, M.N., Bayarri, B., Gime´nez, J., Costa, J., 2007. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. B 74, 233–241.
  • Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., Hashib, M. A., 2011. Advances in Heterogeneous Photocatalytic Degradation of Phenols and Dyes in Wastewater: A Review. Water Air Soil Pollut, 215:3–29.
  • Anonymus, 2019. 2018 Yılı Gül Çiçeği Raporu, T.C. Ticaret Bakanlığı, Esnaf, Sanatkârlar Ve Kooperatifçilik Genel Müdürlüğü (accessed 04 January 2020) https://ticaret.gov.tr/data/5d41e59913b87639ac9e02e8/88c4152cb572489f9eb90906fe65e613.pdf
  • Autin, O., Hart, J., Jarvis, P., Mac Adam J., Parsons, S.A., Jefferson, B., 2012. Comparison of UV/H2O2 and UV/ TiO2 for the degradation of metaldehyde: Kinetics and the impact of background organics. Water Research 46, 5655-5662.
  • Başbuğ Çancı, M., 2017. İleri Oksidasyon Prosesi ile Gül İşleme Atıksularının Arıtılabilirliğinin Araştırılması. Doktora Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta. 171 syf.
  • Borges, M.E., Sierra, M., Cuevas, E., Garcia, R.D., Esparza, P., 2016. Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment. Solar Energy 135, 527–535.
  • Cai, Y., Feng, Y.P., 2016. Review on charge transfer and chemical activity of TiO2: Mechanism and applications. Progress in Surface Science 91, 183–202. Deng, Y., and Zhao, R., 2015. Advanced oxidation Processes (AOPs) in Wastewater Treatment. Water Pollution (S Sengupta, Section Editor) Curr Pollution Rep, 1:167–176. DOI 10.1007/s40726-015-0015-z
  • Glaze WH, Kang JW, Chapin DH. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng 1987; 9: 335–52.
  • Ghaly, M. Y., Jamil, T. S., El-Seesy, I. E., Souaya, E.R., Nasr, R.A., 2011. Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2. Chemical Engineering Journal, 168, 446–454.
  • Gokturk Baydar, N., Baydar, H., 2013. Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts. Industrial Crops and Products 41, 375– 380.
  • Kovatcheva, N., Zheljazkov, V.D., Astatkie, T., 2011. Productivity, Oil Content, Composition, and Bioactivity of Oil-bearing Rose Accessions. HORTSCIENCE 46(5):710–714.
  • Liu S., Yang, J., Choy, J., 2006. Microporous SiO2–TiO2 nanosols pillared montmorillonite for photocatalytic decomposition of methyl orange, J. Photochem. Photobiol. A: Chem. 179.75–80.
  • Mecha, A.C., Onyango, M. S., Ochieng, A., Jamil, T. S. , Fourie, C. J. S., Momba. M. N. B., 2016. UV and solar light photocatalytic removal of organic contaminants in muni cipal wastewater. SEPARATION SCIENCE AND TECHNOLOGY, VOL. 51, NO. 10, 1765–1778. http://dx.doi.org/10.1080/01496395.2016.1178
  • Nayebi, N., Khalili, N., Kamalinejad, M., Emtiazy, M., 2017. A systematic review of the efficacy and safety of Rosa damascena Mill. with an overview on its phytopharmacological properties. Complementary Therapies in Medicine, 34, 129–140.
  • Pereira, J. H.O.S., Vilar, V. J.P., Borges, M.T., Gonza´lez, O., Esplugas, S., Boaventura, R.A.R., 2011. Photocatalytic degradation of oxytetracycline using TiO2 under natural and simulated solar radiation. Solar Energy 85, 2732–2740.
  • Rubio-Clemente, A., Torres-Palma, R.A., Peñuela G.A., 2014. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review. Science of the Total Environment, 478, 201–225.
  • Rusanov, K., Kovacheva N., Rusanova, M., Atanassov, I., 2011. Traditional Rosa damascena flower harvesting practices evaluated through GC/MS metabolite profiling of flower volatiles. Food Chemistry, 129, 1851–1859.
  • Rusanov, K., Garo, E., Rusanova, M., Fertig, O., Hamburger, M., Atanassov, I., Butterweck, V., 2014. Recovery of Polyphenols From Rose Oil Distillation Wastewater Using Adsoprtion Resins-A Pilot Study. Planta Med., 80: 1657-1664.
  • Schieber, A., Mihalev, K., Berardini, N., Molov P., and Carle, R., 2005. Flavonol Glycosides from Distilled Petals of Rosa Damascena Mill. Z. Naturforsch. 60c, 379-384. (accessed 04 January 2020) http://www.znaturforsch.com/ac/v60c/s60c0379.pdf
  • Slavov, A., Denev, P., Panchev, I., Shikov, V., Nenov, N., Yantcheva, N., Vasileva, I., 2017a. Combined recovery of polysaccharides and polyphenols from Rosa damascena wastes. Industrial Crops and Products 100, 85–94.
  • Slavov, A., Vasileva. I., Stefanov. L., Stoyanova, A., 2017b. REVIEW PAPER Valorization of wastes from the rose oil industry. Rev Environ Sci Biotechnol. DOI 10.1007/s11157-017-9430.
  • Speltini, A., Sturini, M., Maraschi, F., Dondi, D., Fisogni, G., Annovazzi, E., Profumo, A., Buttafava, A., 2015. Evaluation of UV-A and solar light photocatalytic hydrogen gas evolution from olive mill wastewater. International Journal of Hydrogen Energy 40, 4303-4310.
  • Stafford, U., Gary, K.A., Kamat, P.V., 1997. Photocatalytic degradation of 4-chlorophenol: the effects of varying TiO2 concentration and light wavelength, J. Catal. 167, 25–32.
  • Sun, J., Qiao, L., Sun, S., Wang, G., 2008. Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation, J.Hazard. Mater. 155, 312–319.
  • Szczepanik, B., 2017. Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Applied Clay Science 141, 227–239.
  • Tchobanoglous G, Burton F, Stensel H. Wastewater engineering. New York: Metcalf & Eddy Inc; 2003.
  • Terazian, R., ve Serpone, N., 1995. Heterogeneous photocatalysed oxidation of creosote components: mineralization of xylenols by illuminated TiO2 in oxygenated aqueous media, J. Photochem. Photobiol. A: Chem. 89, 163–175.
  • Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., Xu. Y., 2015. Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Review (Special Issue on Photocatalysis). Chinese Journal of Catalysis, 36, 2049–2070.
  • Vasanth Kumar, K., Porkodi, K., Rocha, F., 2008. Langmuir–Hinshelwood kinetics – A theoretical study. Catalysis Communications 9, 82–84.
Year 2020, Volume: 4 Issue: 1, 1 - 6, 31.03.2020
https://doi.org/10.30516/bilgesci.680500

Abstract

Project Number

3673-D1-13

References

  • Abella´n, M.N., Bayarri, B., Gime´nez, J., Costa, J., 2007. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. B 74, 233–241.
  • Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., Hashib, M. A., 2011. Advances in Heterogeneous Photocatalytic Degradation of Phenols and Dyes in Wastewater: A Review. Water Air Soil Pollut, 215:3–29.
  • Anonymus, 2019. 2018 Yılı Gül Çiçeği Raporu, T.C. Ticaret Bakanlığı, Esnaf, Sanatkârlar Ve Kooperatifçilik Genel Müdürlüğü (accessed 04 January 2020) https://ticaret.gov.tr/data/5d41e59913b87639ac9e02e8/88c4152cb572489f9eb90906fe65e613.pdf
  • Autin, O., Hart, J., Jarvis, P., Mac Adam J., Parsons, S.A., Jefferson, B., 2012. Comparison of UV/H2O2 and UV/ TiO2 for the degradation of metaldehyde: Kinetics and the impact of background organics. Water Research 46, 5655-5662.
  • Başbuğ Çancı, M., 2017. İleri Oksidasyon Prosesi ile Gül İşleme Atıksularının Arıtılabilirliğinin Araştırılması. Doktora Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta. 171 syf.
  • Borges, M.E., Sierra, M., Cuevas, E., Garcia, R.D., Esparza, P., 2016. Photocatalysis with solar energy: Sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment. Solar Energy 135, 527–535.
  • Cai, Y., Feng, Y.P., 2016. Review on charge transfer and chemical activity of TiO2: Mechanism and applications. Progress in Surface Science 91, 183–202. Deng, Y., and Zhao, R., 2015. Advanced oxidation Processes (AOPs) in Wastewater Treatment. Water Pollution (S Sengupta, Section Editor) Curr Pollution Rep, 1:167–176. DOI 10.1007/s40726-015-0015-z
  • Glaze WH, Kang JW, Chapin DH. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng 1987; 9: 335–52.
  • Ghaly, M. Y., Jamil, T. S., El-Seesy, I. E., Souaya, E.R., Nasr, R.A., 2011. Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2. Chemical Engineering Journal, 168, 446–454.
  • Gokturk Baydar, N., Baydar, H., 2013. Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts. Industrial Crops and Products 41, 375– 380.
  • Kovatcheva, N., Zheljazkov, V.D., Astatkie, T., 2011. Productivity, Oil Content, Composition, and Bioactivity of Oil-bearing Rose Accessions. HORTSCIENCE 46(5):710–714.
  • Liu S., Yang, J., Choy, J., 2006. Microporous SiO2–TiO2 nanosols pillared montmorillonite for photocatalytic decomposition of methyl orange, J. Photochem. Photobiol. A: Chem. 179.75–80.
  • Mecha, A.C., Onyango, M. S., Ochieng, A., Jamil, T. S. , Fourie, C. J. S., Momba. M. N. B., 2016. UV and solar light photocatalytic removal of organic contaminants in muni cipal wastewater. SEPARATION SCIENCE AND TECHNOLOGY, VOL. 51, NO. 10, 1765–1778. http://dx.doi.org/10.1080/01496395.2016.1178
  • Nayebi, N., Khalili, N., Kamalinejad, M., Emtiazy, M., 2017. A systematic review of the efficacy and safety of Rosa damascena Mill. with an overview on its phytopharmacological properties. Complementary Therapies in Medicine, 34, 129–140.
  • Pereira, J. H.O.S., Vilar, V. J.P., Borges, M.T., Gonza´lez, O., Esplugas, S., Boaventura, R.A.R., 2011. Photocatalytic degradation of oxytetracycline using TiO2 under natural and simulated solar radiation. Solar Energy 85, 2732–2740.
  • Rubio-Clemente, A., Torres-Palma, R.A., Peñuela G.A., 2014. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: A review. Science of the Total Environment, 478, 201–225.
  • Rusanov, K., Kovacheva N., Rusanova, M., Atanassov, I., 2011. Traditional Rosa damascena flower harvesting practices evaluated through GC/MS metabolite profiling of flower volatiles. Food Chemistry, 129, 1851–1859.
  • Rusanov, K., Garo, E., Rusanova, M., Fertig, O., Hamburger, M., Atanassov, I., Butterweck, V., 2014. Recovery of Polyphenols From Rose Oil Distillation Wastewater Using Adsoprtion Resins-A Pilot Study. Planta Med., 80: 1657-1664.
  • Schieber, A., Mihalev, K., Berardini, N., Molov P., and Carle, R., 2005. Flavonol Glycosides from Distilled Petals of Rosa Damascena Mill. Z. Naturforsch. 60c, 379-384. (accessed 04 January 2020) http://www.znaturforsch.com/ac/v60c/s60c0379.pdf
  • Slavov, A., Denev, P., Panchev, I., Shikov, V., Nenov, N., Yantcheva, N., Vasileva, I., 2017a. Combined recovery of polysaccharides and polyphenols from Rosa damascena wastes. Industrial Crops and Products 100, 85–94.
  • Slavov, A., Vasileva. I., Stefanov. L., Stoyanova, A., 2017b. REVIEW PAPER Valorization of wastes from the rose oil industry. Rev Environ Sci Biotechnol. DOI 10.1007/s11157-017-9430.
  • Speltini, A., Sturini, M., Maraschi, F., Dondi, D., Fisogni, G., Annovazzi, E., Profumo, A., Buttafava, A., 2015. Evaluation of UV-A and solar light photocatalytic hydrogen gas evolution from olive mill wastewater. International Journal of Hydrogen Energy 40, 4303-4310.
  • Stafford, U., Gary, K.A., Kamat, P.V., 1997. Photocatalytic degradation of 4-chlorophenol: the effects of varying TiO2 concentration and light wavelength, J. Catal. 167, 25–32.
  • Sun, J., Qiao, L., Sun, S., Wang, G., 2008. Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation, J.Hazard. Mater. 155, 312–319.
  • Szczepanik, B., 2017. Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Applied Clay Science 141, 227–239.
  • Tchobanoglous G, Burton F, Stensel H. Wastewater engineering. New York: Metcalf & Eddy Inc; 2003.
  • Terazian, R., ve Serpone, N., 1995. Heterogeneous photocatalysed oxidation of creosote components: mineralization of xylenols by illuminated TiO2 in oxygenated aqueous media, J. Photochem. Photobiol. A: Chem. 89, 163–175.
  • Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., Xu. Y., 2015. Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Review (Special Issue on Photocatalysis). Chinese Journal of Catalysis, 36, 2049–2070.
  • Vasanth Kumar, K., Porkodi, K., Rocha, F., 2008. Langmuir–Hinshelwood kinetics – A theoretical study. Catalysis Communications 9, 82–84.
There are 29 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Melda Başbuğ Çancı 0000-0002-5765-9573

Mehmet Kılıç 0000-0002-2613-2832

Project Number 3673-D1-13
Publication Date March 31, 2020
Acceptance Date March 9, 2020
Published in Issue Year 2020 Volume: 4 Issue: 1

Cite

APA Başbuğ Çancı, M., & Kılıç, M. (2020). Treatment of Rose Processing Wastewater By Sunlight/TiO2 Photocatalysis Process. Bilge International Journal of Science and Technology Research, 4(1), 1-6. https://doi.org/10.30516/bilgesci.680500