Research Article
BibTex RIS Cite

Cardiotoxic Effect of Fenamiphos and Protective Role of Naringenin in Rats

Year 2023, Volume: 1 Issue: 2, 73 - 80, 30.11.2023

Abstract

Fenamiphos is a broad-spectrum organophosphate insecticide. It is used in agriculture to control soil nematodes in several cops like peanuts, tomatoes, ginger, as well as in pineapples, cotton in worldwide. Naringenin is one of the flavonoids and was found to display strong anti-inflammatory and antioxidant effect. In this study, we investigated how naringenin had protective effects on the damaged rat heart tissue caused by fenamiphos. In the study, experimental rats were organized into four equal groups. These; control, naringenin, fenamiphos and fenamiphos plus naringenin. The chemicals were given to the rats by orally during for 28 days. After 4th week, malondialdehyde (MDA) levels and antioxidant enzyme activities (SOD, CAT, GPx and GST) in rat heart tissues were investigated spectrophotometrically by various methods. Also, histopathological changes were analysed by light microscope. Any important changes were observed between control and naringenin treated groups. End of the experimental timeline, fenamiphos caused increasing the levels of MDA while a decrease in antioxidant enzyme activities were detected in comparison with the control animals. In addition, many pathological changes were observed in fenamiphos treated group. Fewer pathological changes and less oxidative damage were detected in the group in which fenamiphos and naringenin were administered together. In the study it is observed that fenamiphos caused oxidative stress and histopathological changes in rat heart tissue, naringenin treatment reduced this toxicity.

References

  • Z. Laghari, N. Manawar, S. Akash, A. Saddique, M. Malik, I. Basit, H. Rafeeq, and N. Fatima, “Role of Chlorpyrifos in Experimentally Based Rats,” Haya Saudi J. Biol. Sci., vol. 5, no. 10, pp. 220–225, Oct. 2020, doi: 10.36348/sjls.2020.v05i10.005.
  • X. Zeng, Z. Du, X. Ding, and W. Jiang, “Protective Effects of Dietary Flavonoids Against Pesticide-Induced Toxicity: A Review,” Trends Food Sci. Technol., vol. 109, pp. 271–279, Jan. 2021, doi: 10.1016/j.tifs.2021.01.046.
  • H. Uzunbayir and F. G. Apaydin, “Protective Role of Ferulic Acid on Testis-Histoarchitecture and Oxidative Damages Induced by Dimethoate in Rats,” Braz. Arch. Biol. Technol., vol. 64, pp. 21210300 Sep. 2021, doi: 10.1590/1678-4324-2021210300.
  • R. T. Alam, T. S. Imam, A. M. A. Abo-Elmaaty, and A. H. Arisha, “Amelioration of Fenitrothion Induced Oxidative DNA Damage and Inactivation of Caspase-3 in the Brain and Spleen Tissues of Male Rats by N-acetylcysteine,” Life Sci., vol. 231, pp. 116534, Aug. 2019, doi: 10.1016/j.lfs.2019.06.009.
  • A. A. A. Galal, R. A. Ramadan, M. A. A. Metwally, and S. M. A. El-Sheikh, “Protective Effect of N-acetylcysteine on Fenitrothion-induced Toxicity: The Antioxidant Status and Metabolizing Enzymes Expression in Rats,” Ecotoxicol. Environ. Saf., vol. 171, pp. 502–510, Jan. 2019, doi: 10.1016/j.ecoenv.2019.01.004.
  • A. A. Romeh and M. Y. Hendawi, “Biochemical Interactions between Glycine max L. Silicon Dioxide (SiO2) and Plant Growth-promoting Bacteria (PGPR) for Improving Phytoremediation of Soil Contaminated with Fenamiphos and its Degradation Product,” Pestic. Biochem. Phys., vol. 142, pp. 32–43, Oct. 2017, doi: 10.1016/j.pestbp.2017.01.001.
  • B. K. Singh, A. Walker, and D. J. Wright, “Bioremedial Potential of Fenamiphos and Chlorpyrifos Degrading Isolates: Influence of Different Environmental Conditions,” Soil Biol. Biochem., vol. 38, no. 9, pp. 2682–2693, Apr. 2006, doi: 10.1016/j.soilbio.2006.04.019.
  • E. Birben, U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci, “Oxidative Stress and Antioxidant Defense,” WAOjournal., vol. 5, no. 1, pp. 9–19, Jan. 2012, doi: 10.1097/WOX.0b013e3182439613.
  • C. W. I. Haminiuk, G. M. Maciel, M. S. V. Plata-Oviedo, and R. M. Peralta, “Phenolic Compounds in Fruits – An Overview,” Int. J. Food Sci., vol. 47, no. 10, pp. 2023–2044, Apr. 2012, doi: 10.1111/j.1365-2621.2012.03067.x.
  • X. Zhang, M. Li, H. Wu, W. Fan, J. Zhang, W.i Su, Y. Wang, and P. Li, “Naringenin Attenuates Inflammation, Apoptosis, and Ferroptosis in Silver Nanoparticle-induced Lung Injury Through a Mechanism Associated with Nrf2/HO-1 axis: In Vitro and In Vivo Studies,” Life Sci., vol. 311, pp. 121127, Dec. 2022, doi: 10.1016/j.lfs.2022.121127.
  • L. Meng, H. Ma, H. Guo, Q. Kong, and Y. Zhang, “The Cardioprotective Effect of Naringenin Against Ischemia/ Reperfusion Injury Through Activation of ATP-sensitive Potassium Channel in Rat,” Can. J. Physiol. Pharmacol., vol. 94, no. 9, pp. 973–978, Apr. 2016, doi: 10.1139/cjpp-2016-0008.
  • M. Erişir, F. Benzer, A. Özkaya, and Ü. Dağ, “Kurşun Uygulanan Ratların Bazı Dokularında (Kalp, Akciğer, Beyin, Dalak, Kas) Oksidatif Stress Üzerine Naringeninin Etkisi,” Atatürk Üniv. Vet. Bil., vol. 13, no. 1, pp. 34–41, Apr. 2018, doi: 10.17094/ataunivbd.417125.
  • M. A. Alam, N. Subhan, M. Rahman, S. J. Uddin, H. M. Reza, and S. D. Sarker, “Effect of Citrus Flavonoids, Naringin and Naringenin, on Metabolic Syndrome and Their Mechanisms of Action 1,2,” Adv. Nutr., vol. 5, no. 4, pp. 404–417, Jul. 2014, doi: 10.3945/an.113.005603.
  • O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein Measurement with the Folin Phenol Reagent,” J. Biol. Chem., vol. 193, no. 1, pp. 265–275, Nov. 1951, doi: 10.1016/S0021-9258(19)52451-6.
  • H. Aebi, “Catalase in Vitro,” Meth. Enzymol., vol. 105, pp. 121–126, 1984, doi: 10.1016/s0076-6879(84)05016-3.
  • S. Marklund and G. Marklund, “Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and A Convenient Assay for Superoxide Dismutase,” Eur. J. Biochem., vol. 47, no. 3, pp. 469–474, Sep. 1974, doi: 10.1111/j.1432-1033.1974.tb03714.x.
  • W. H. Habig, M. J. Pabst, and W. B. Jakoby, “Glutathione-Stransferases: The First Enzymatic Step in Mercapturic Acid Formation,” J. Biol. Chem., vol. 249, no. 22, pp. 7130–7139, Nov. 1974, doi: 10.1016/S0021-9258(19)42083-8.
  • D. E Paglia and W. N. Valentine, “Studies on the Quantative and Qualitative Characterization of Erythrocyte Glutathione Peroxidase,” J. Lab. Med., vol. 70, no. 1, pp. 158–169, Jul. 1967.
  • H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction,” Anal. Biochem., vol. 95, no. 2, pp. 351–358, Jun. 1979, doi: 10.1016/0003-2697(79)90738-3.
  • E. Atabay and Y. Kalender, “Protective Effect of Taurine and Curcumin on Lung Toxicity of Bisphenol A in Rats,” Bozok J Sci., vol. 1, no. 1, pp. 16–22, Apr. 2023.
  • H. Baş, F. G. Apaydın, S. Kalender, and Y. Kalender, “Lead Nitrate and Cadmium Chloride Induced Hepatotoxicity and Nephrotoxicity: Protective Effects of Sesamol on Biochemical Indices and Pathological Changes,” J. Food Biochem., vol. 45, no. 7, pp. 13769, May. 2021, doi: 10.1111/jfbc.13769.
  • S. Kalender, F. G. Apaydin, and Y. Kalender, “Testicular Toxicity of Orally Administrated Bisphenol A in Rats and Protective Role of Taurine and Curcumin,” Pak. J. Pharm. Sci., vol. 32, no. 3, pp. 1043–1047, May. 2019.
  • F. G. Apaydın, S. Kalender, and Y. Kalender, “Subacute Exposure to Dimethoate Induces Hepatotoxic and Nephrotoxic Effects on Male Rats: Ameliorative Effects of Ferulic Acid,” Indian J. Exp. Biol., no. 61, no. 1, pp. 51–58, Jan. 2023, doi: 10.56042/ijeb.v61i01.49688.
  • İ. Aktaş, Ö. Özmen, H. Tutun, A. Yalçın, and A. Türk, “Artemisinin Attenuates Doxorubicin Induced Cardiotoxicity and Hepatotoxicity in Rats,” Biotech. Histochem., vol. 95, no. 2, pp. 121–128, Sep. 2019, doi: 10.1080/10520295.2019.1647457.
  • E. Akbel, D. Arslan-Acaroz, H. H. Demirel, I. Kucukkurt, and S. Ince, “The Subchronic Exposure to Malathion, an Organophosphate Pesticide, Causes Lipid Peroxidation, Oxidative Stress, and Tissue Damage in Rats: The Protective Role of Resveratrol,” Toxicol. Res., vol. 7, no. 3, pp. 503–512, Apr. 2018, doi: 10.1039/c8tx00030a.
  • B. Qader, M. G. Baron, I. Hussain, R. P. Johnson, and J. Gonzalez‑Rodriguez, “Electrochemical Determination of the Organophosphate Compound Fenamiphos and its Main Metabolite, Fenamiphos Sulfoxide,” Monatsh. Chem., vol. 150, no. 3, pp. 411–417, Jan. 2019, doi: 10.1007/s00706-018-2334-4.
  • B. K. Singh, A. Walker, and D. J. Wright, “Bioremedial Potential of Fenamiphos and Chlorpyrifos Degrading Isolates: Influence of Different Environmental Conditions,” Soil Biol. Biochem., vol. 38, no. 9, pp. 2682–2693, Sept. 2006, doi: 10.1016/j.soilbio.2006.04.019.
  • N. Georgiadis, K. Tsarouha, C. Tsitsimpikou, A. Vardavas, R. Rezaee, I. Germanakis, A. Tsatsakis, D. Stagos, and D. Kouretas, “Pesticides and Cardiotoxicity. Where Do We Stand?,” Toxicol. Appl. Pharmacol., vol. 353, pp. 1-14, Aug. 2018, doi: 10.1016/j.taap.2018.06.004.
  • A. Goel, V. Dani, and D. K. Dhawan, “Protective Effects of Zinc on Lipid Peroxidation, Antioxidant Enzymes and Hepatic Histoarchitecture in Chlorpyrifos-induced Toxicity,” Chem. Biol. Interact., vol. 156, no. 2–3, pp. 131–140, Oct. 2005, doi: 10.1016/j.cbi.2005.08.004.
  • Y. B. Othmène, H. Hamdi, I. Amara, and S. Abid-Essefi, “Tebuconazole Induced Oxidative Stress and Histopathological Alterations in Adult Rat Heart,” Pestic. Biochem. Physiol., vol. 170, pp. 104671, Nov. 2020, doi: 10.1016/j.pestbp.2020.104671.
  • R. H. Moghaddam, Z. Samimi, S. Z. Moradi, P. J. Little, S. Xu, and M. H. Farzaei, “Naringenin and Naringin in Cardiovascular Disease Prevention: A Preclinical Review,” Eur. J. Pharmacol., vol. 887, pp. 173535, Nov. 2020, doi: 10.1016/j.ejphar.2020.173535.
Year 2023, Volume: 1 Issue: 2, 73 - 80, 30.11.2023

Abstract

References

  • Z. Laghari, N. Manawar, S. Akash, A. Saddique, M. Malik, I. Basit, H. Rafeeq, and N. Fatima, “Role of Chlorpyrifos in Experimentally Based Rats,” Haya Saudi J. Biol. Sci., vol. 5, no. 10, pp. 220–225, Oct. 2020, doi: 10.36348/sjls.2020.v05i10.005.
  • X. Zeng, Z. Du, X. Ding, and W. Jiang, “Protective Effects of Dietary Flavonoids Against Pesticide-Induced Toxicity: A Review,” Trends Food Sci. Technol., vol. 109, pp. 271–279, Jan. 2021, doi: 10.1016/j.tifs.2021.01.046.
  • H. Uzunbayir and F. G. Apaydin, “Protective Role of Ferulic Acid on Testis-Histoarchitecture and Oxidative Damages Induced by Dimethoate in Rats,” Braz. Arch. Biol. Technol., vol. 64, pp. 21210300 Sep. 2021, doi: 10.1590/1678-4324-2021210300.
  • R. T. Alam, T. S. Imam, A. M. A. Abo-Elmaaty, and A. H. Arisha, “Amelioration of Fenitrothion Induced Oxidative DNA Damage and Inactivation of Caspase-3 in the Brain and Spleen Tissues of Male Rats by N-acetylcysteine,” Life Sci., vol. 231, pp. 116534, Aug. 2019, doi: 10.1016/j.lfs.2019.06.009.
  • A. A. A. Galal, R. A. Ramadan, M. A. A. Metwally, and S. M. A. El-Sheikh, “Protective Effect of N-acetylcysteine on Fenitrothion-induced Toxicity: The Antioxidant Status and Metabolizing Enzymes Expression in Rats,” Ecotoxicol. Environ. Saf., vol. 171, pp. 502–510, Jan. 2019, doi: 10.1016/j.ecoenv.2019.01.004.
  • A. A. Romeh and M. Y. Hendawi, “Biochemical Interactions between Glycine max L. Silicon Dioxide (SiO2) and Plant Growth-promoting Bacteria (PGPR) for Improving Phytoremediation of Soil Contaminated with Fenamiphos and its Degradation Product,” Pestic. Biochem. Phys., vol. 142, pp. 32–43, Oct. 2017, doi: 10.1016/j.pestbp.2017.01.001.
  • B. K. Singh, A. Walker, and D. J. Wright, “Bioremedial Potential of Fenamiphos and Chlorpyrifos Degrading Isolates: Influence of Different Environmental Conditions,” Soil Biol. Biochem., vol. 38, no. 9, pp. 2682–2693, Apr. 2006, doi: 10.1016/j.soilbio.2006.04.019.
  • E. Birben, U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci, “Oxidative Stress and Antioxidant Defense,” WAOjournal., vol. 5, no. 1, pp. 9–19, Jan. 2012, doi: 10.1097/WOX.0b013e3182439613.
  • C. W. I. Haminiuk, G. M. Maciel, M. S. V. Plata-Oviedo, and R. M. Peralta, “Phenolic Compounds in Fruits – An Overview,” Int. J. Food Sci., vol. 47, no. 10, pp. 2023–2044, Apr. 2012, doi: 10.1111/j.1365-2621.2012.03067.x.
  • X. Zhang, M. Li, H. Wu, W. Fan, J. Zhang, W.i Su, Y. Wang, and P. Li, “Naringenin Attenuates Inflammation, Apoptosis, and Ferroptosis in Silver Nanoparticle-induced Lung Injury Through a Mechanism Associated with Nrf2/HO-1 axis: In Vitro and In Vivo Studies,” Life Sci., vol. 311, pp. 121127, Dec. 2022, doi: 10.1016/j.lfs.2022.121127.
  • L. Meng, H. Ma, H. Guo, Q. Kong, and Y. Zhang, “The Cardioprotective Effect of Naringenin Against Ischemia/ Reperfusion Injury Through Activation of ATP-sensitive Potassium Channel in Rat,” Can. J. Physiol. Pharmacol., vol. 94, no. 9, pp. 973–978, Apr. 2016, doi: 10.1139/cjpp-2016-0008.
  • M. Erişir, F. Benzer, A. Özkaya, and Ü. Dağ, “Kurşun Uygulanan Ratların Bazı Dokularında (Kalp, Akciğer, Beyin, Dalak, Kas) Oksidatif Stress Üzerine Naringeninin Etkisi,” Atatürk Üniv. Vet. Bil., vol. 13, no. 1, pp. 34–41, Apr. 2018, doi: 10.17094/ataunivbd.417125.
  • M. A. Alam, N. Subhan, M. Rahman, S. J. Uddin, H. M. Reza, and S. D. Sarker, “Effect of Citrus Flavonoids, Naringin and Naringenin, on Metabolic Syndrome and Their Mechanisms of Action 1,2,” Adv. Nutr., vol. 5, no. 4, pp. 404–417, Jul. 2014, doi: 10.3945/an.113.005603.
  • O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein Measurement with the Folin Phenol Reagent,” J. Biol. Chem., vol. 193, no. 1, pp. 265–275, Nov. 1951, doi: 10.1016/S0021-9258(19)52451-6.
  • H. Aebi, “Catalase in Vitro,” Meth. Enzymol., vol. 105, pp. 121–126, 1984, doi: 10.1016/s0076-6879(84)05016-3.
  • S. Marklund and G. Marklund, “Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and A Convenient Assay for Superoxide Dismutase,” Eur. J. Biochem., vol. 47, no. 3, pp. 469–474, Sep. 1974, doi: 10.1111/j.1432-1033.1974.tb03714.x.
  • W. H. Habig, M. J. Pabst, and W. B. Jakoby, “Glutathione-Stransferases: The First Enzymatic Step in Mercapturic Acid Formation,” J. Biol. Chem., vol. 249, no. 22, pp. 7130–7139, Nov. 1974, doi: 10.1016/S0021-9258(19)42083-8.
  • D. E Paglia and W. N. Valentine, “Studies on the Quantative and Qualitative Characterization of Erythrocyte Glutathione Peroxidase,” J. Lab. Med., vol. 70, no. 1, pp. 158–169, Jul. 1967.
  • H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction,” Anal. Biochem., vol. 95, no. 2, pp. 351–358, Jun. 1979, doi: 10.1016/0003-2697(79)90738-3.
  • E. Atabay and Y. Kalender, “Protective Effect of Taurine and Curcumin on Lung Toxicity of Bisphenol A in Rats,” Bozok J Sci., vol. 1, no. 1, pp. 16–22, Apr. 2023.
  • H. Baş, F. G. Apaydın, S. Kalender, and Y. Kalender, “Lead Nitrate and Cadmium Chloride Induced Hepatotoxicity and Nephrotoxicity: Protective Effects of Sesamol on Biochemical Indices and Pathological Changes,” J. Food Biochem., vol. 45, no. 7, pp. 13769, May. 2021, doi: 10.1111/jfbc.13769.
  • S. Kalender, F. G. Apaydin, and Y. Kalender, “Testicular Toxicity of Orally Administrated Bisphenol A in Rats and Protective Role of Taurine and Curcumin,” Pak. J. Pharm. Sci., vol. 32, no. 3, pp. 1043–1047, May. 2019.
  • F. G. Apaydın, S. Kalender, and Y. Kalender, “Subacute Exposure to Dimethoate Induces Hepatotoxic and Nephrotoxic Effects on Male Rats: Ameliorative Effects of Ferulic Acid,” Indian J. Exp. Biol., no. 61, no. 1, pp. 51–58, Jan. 2023, doi: 10.56042/ijeb.v61i01.49688.
  • İ. Aktaş, Ö. Özmen, H. Tutun, A. Yalçın, and A. Türk, “Artemisinin Attenuates Doxorubicin Induced Cardiotoxicity and Hepatotoxicity in Rats,” Biotech. Histochem., vol. 95, no. 2, pp. 121–128, Sep. 2019, doi: 10.1080/10520295.2019.1647457.
  • E. Akbel, D. Arslan-Acaroz, H. H. Demirel, I. Kucukkurt, and S. Ince, “The Subchronic Exposure to Malathion, an Organophosphate Pesticide, Causes Lipid Peroxidation, Oxidative Stress, and Tissue Damage in Rats: The Protective Role of Resveratrol,” Toxicol. Res., vol. 7, no. 3, pp. 503–512, Apr. 2018, doi: 10.1039/c8tx00030a.
  • B. Qader, M. G. Baron, I. Hussain, R. P. Johnson, and J. Gonzalez‑Rodriguez, “Electrochemical Determination of the Organophosphate Compound Fenamiphos and its Main Metabolite, Fenamiphos Sulfoxide,” Monatsh. Chem., vol. 150, no. 3, pp. 411–417, Jan. 2019, doi: 10.1007/s00706-018-2334-4.
  • B. K. Singh, A. Walker, and D. J. Wright, “Bioremedial Potential of Fenamiphos and Chlorpyrifos Degrading Isolates: Influence of Different Environmental Conditions,” Soil Biol. Biochem., vol. 38, no. 9, pp. 2682–2693, Sept. 2006, doi: 10.1016/j.soilbio.2006.04.019.
  • N. Georgiadis, K. Tsarouha, C. Tsitsimpikou, A. Vardavas, R. Rezaee, I. Germanakis, A. Tsatsakis, D. Stagos, and D. Kouretas, “Pesticides and Cardiotoxicity. Where Do We Stand?,” Toxicol. Appl. Pharmacol., vol. 353, pp. 1-14, Aug. 2018, doi: 10.1016/j.taap.2018.06.004.
  • A. Goel, V. Dani, and D. K. Dhawan, “Protective Effects of Zinc on Lipid Peroxidation, Antioxidant Enzymes and Hepatic Histoarchitecture in Chlorpyrifos-induced Toxicity,” Chem. Biol. Interact., vol. 156, no. 2–3, pp. 131–140, Oct. 2005, doi: 10.1016/j.cbi.2005.08.004.
  • Y. B. Othmène, H. Hamdi, I. Amara, and S. Abid-Essefi, “Tebuconazole Induced Oxidative Stress and Histopathological Alterations in Adult Rat Heart,” Pestic. Biochem. Physiol., vol. 170, pp. 104671, Nov. 2020, doi: 10.1016/j.pestbp.2020.104671.
  • R. H. Moghaddam, Z. Samimi, S. Z. Moradi, P. J. Little, S. Xu, and M. H. Farzaei, “Naringenin and Naringin in Cardiovascular Disease Prevention: A Preclinical Review,” Eur. J. Pharmacol., vol. 887, pp. 173535, Nov. 2020, doi: 10.1016/j.ejphar.2020.173535.
There are 31 citations in total.

Details

Primary Language English
Subjects Animal Physiology-Ecophysiology
Journal Section Research Articles
Authors

Gökçe Ceren Boya 0009-0006-5035-0596

Fatma Gökçe Apaydın 0000-0002-2771-7488

Publication Date November 30, 2023
Submission Date August 21, 2023
Published in Issue Year 2023 Volume: 1 Issue: 2

Cite

IEEE G. C. Boya and F. G. Apaydın, “Cardiotoxic Effect of Fenamiphos and Protective Role of Naringenin in Rats”, Bozok J. Sci., vol. 1, no. 2, pp. 73–80, 2023.