Research Article
BibTex RIS Cite

Investigation of the effects of boro-sintering process on the microstructure and hardness properties of raw P/M parts

Year 2019, Volume: 4 Issue: 2, 77 - 84, 30.06.2019
https://doi.org/10.30728/boron.487811

Abstract

In this study; high purity iron (Fe) powders were pressed and subjected to BoroSintering (B/S) at 950 °C and 1050 °C for 4 and 6 hours in solid medium. The sintering process, which is one of the main steps in Powder Metallurgy (P/M), was carried out simultaneously with the boriding process. By this way the boriding and sintering processes (B/S) were completed in a single step and the possible oxide phases in microstructure were also decreased. After B/S process, hardness measurements were carried out by microvickers (HV0.05) method and hardness profiles and coating qualities were investigated. Samples were subjected to microstructure analyses by optical microscopy (OM) and field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS). As a result of the study, it was determined that a homogeneous microstructure could be obtained by applying B/S process to the samples produced by P/M method using high purity Fe powders. It was seen that B/S process can be applied successfully to provide the desired conditions in the microstructure from the obtained hardness profiles.

References

  • [1] German R., Powder Metallurgy, Science, Metal Powder Industries Federation, Princeton, NJ p.2, 1984.
  • [2] Salak A., Ferrous Powder Metallurgy, Cambridge International Science Publishing, Cambridge, 1995.
  • [3] Hadrboletz A., Weiss B, Fatigue behavior of iron based sintered material: A review. Int. Mater. Rev., 42 (1), 1-44, 1997.
  • [4] Naransimhan K. S., Sintering of powder mixtures and the growth of ferrous powder metallurgy, Mater. Chem. Phys., 67 (1-3), 56-65. 2001.
  • [5] German R. M., Powder Metallurgy of Iron and Steel, New York, John Wiley & Sons Inc., 1998.
  • [6] Aneta S.N., The effect of the addition of boron on the densification, microstructure and properties of sintered 17-4 PH stainless steel, Tech. Trans. Mech., 85-96, 2-M, 2014.
  • [7] Simchi A., Pohl H. Effects of laser sintering processing parameters on the microstructure and densification of iron powder, Mater. Sci. Eng. A, 359 (1–2), 119-128, 2003.
  • [8] Bayramlı E., Gölgelioğlu Ö., Bülent E. H., Powder metal development for electrical motor applications, J. of Mater. Process. Technol., 161, (1–2), 83-88, 2005.
  • [9] ASM Handbook, Vol. 7, Powder Metallurgy., ASM International, USA, 1998.
  • [10] Sinha A. K., Boronizing, Heat Treating, ASM Int, 437– 447, 1991.
  • [11] Matuschka A. G., Boronizing C. Hanser, Munchen, 1980.
  • [12] Günen A., Koç V., Kanca E., Gök M. S., Kurt B., Kırar E., Demir M. Effect of boro-sintering process on microstructure and phase formations of P/M AISI 1010 Steel” The Int. Conf. on Mater. Sci., Mech. Auto. Eng. Techno. in Çeşme-İzmir (IMSMATEC’18), 10-12 Nisan, 2018.
  • [13] Subrahmanyam J., Gopinath K., Wear studies on boronized mild steel, Wear, 95, 287-292, 1984.
  • [14] Kusmanov S. A., Tambovskiy I. V., Sevostyanova V. S., Savushkina S.V., Belkin P.N., Anode plasma electrolytic boriding of medium carbon steel, Surf. Coat. Technol., 291, 334-341, 2016.
  • [15] Piasecki A., Kulka M., Kotkowiak M., Wear resistance improvement of 100CrMnSi6-4 bearing steel by laser boriding using CaF2 self-lubricating addition, Tribol. Int., 97, 173-191, 2016.
  • [16] Elia-Espinosa M., Ortiz-Domínguez M., Keddam M., Gómez-Vargas O. A., Arenas-Flores A., BarrientosHernández F. R., West A. R., Sinclair D. C., Boriding kinetics and mechanical behaviour of AISI O1 steel, Surf. Eng., 31 (8), 588-597, 2015.
  • [17] De Oliveira P. G. B., Aureliano R. T., Mariani F. E., Totten G., Casteletti L. C. Boriding of AISI 440B stainless steel and coating characterization, Proc. of the 29th ASM Heat Treat. Soc. Conf. 2017.
  • [18] Yang H., Wu X., Cao G., Yang Z., Enhanced boronizing kinetics and high temperature wear resistance of H13 steel with boriding treatment assisted by air blast shot peenin, Surf. Coat. Technol., 307, 506-516, 2016.
  • [19] Prince M., Arjun S. L., Surya Raj G., Gopalakrishnan P., Experimental Investigations on the Effects of Multicomponent Laser Boriding on steels. Mater. Today: Proc., 5 (11), 25276-25284, 2018.
  • [20] Keddam M., Espinosa M. E., Domínguez M. O., Simón-Marmolejo I., Pack-boriding of AISI P20 steel: Estimation of boron diffusion coefficients in the Fe2B layers and tribological behaviour, Int. J. of Surf. Sci. Eng., Vol. 11, No. 6, pp. 563-585, 2017.
  • [21] Özsoy A., Çeliğin borlanmasında borür tabakası, geçiş zonu ve ana matriksin özelliklerinin iyileştirilmesi, Anadolu Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Eskişehir, 1991.
  • [22] Topuz P., DIN 1.2842 çeliğinin borlanması ile oluşan borür tabakası üzerine borlama sıcaklık ve süresinin etkileri, BORON, 1 (1) 15-19, 2016.
  • [23] Meriç C., Şahin S., Yılmaz S. S., Investigation of the effect on boride layer of powder particle size used in boronizing with solid boron-yielding substances, Mater. Res. Bull., 35, 2165-2172, 2000.
  • [24] Fichtl W., Boronizing and its practical applications, Mater. in Eng., 2, 276-286, 1981.
  • [25] Chatterjee-Fischer R., Nitriding and nitrocarburizing Part V., Hart. -Tech. Mitt., 36 (5), 248-254, 1981.
  • [26] Dearnley P., Bell T., Engineering the surface with boron based materials, Surf. Eng., 1 (3), 203-217, 1985.
  • [27] Fichtl W. J. G., Saving Energy and Money by Boronizing, Japan Heat Treat. Assoc., Tokyo, 25 November 1988.
  • [28] Galibois A., Boutenko O., Voyzelle B., Mécanisme de formation des couches borurees sur les acıers a haut carbone technique des pates, Acta Metall., 28, 1753, 1980.
  • [29] Sarasola M., Go´mez-Acebo T., Castro F., Microstructural development during liquid phase sintering of Fe and Fe–Mo alloys containing elemental boron additions, Powder Metall., 48 (1), 59-67, 2005.
  • [30] Liu J., Cardamone A., Potter T., German R. M., Semel F. J., Liquid phase sintering of iron–carbon alloys with boron additions, Powder Metall., 43, (1), 57-61, 2000.
  • [31] Mxolisi Brendon Shongwe M. B., Diouf S., Durowoju M. O., Olubambi P. A., Effect of sintering temperature on the microstructure and mechanical properties of Fe30%Ni alloys produced by spark plasma sintering, J. of Alloys Compd., 649, 824-832, 2015.
  • [32] He X., Xiao H., Ozaydin, F. M., Balzuweit K., Liang H., Low temperature boriding of high-carbon steel, Surf. Coat. Technol., 263, 21-26, 2015. [33] Sen S., Sen U., Bindal C., The growth kinetics of borides formed on boronized AISI 4140 steel, Vacuum, 77, 195-202, 2005.
  • [34] Carbucicchio M., Palombarini G., Effects of alloying elements on the growth of iron boride coatings, J. of Mater. Sci. Lett., 6 (10), 1147-1149, 1987.
  • [35] Şeşen F. E., Özgen Ö. S., A study on electrothermochemical boronizing of an IF steel, J. of Eng. Nat. Sci., 32, 334-347, 2014.

Boro-sinterleme işleminin ham T/M parçaların mikroyapı ve sertlik özelliklerine etkilerinin incelenmesi

Year 2019, Volume: 4 Issue: 2, 77 - 84, 30.06.2019
https://doi.org/10.30728/boron.487811

Abstract

Bu çalışmada; yüksek saflıkta demir (Fe) tozları preslenmiş ve katı ortamda 4 ve 6 saat boyunca 950°C’de ve 1050°C’de Boro-Sinterleme işlemine (B/S) tabi tutulmuştur. Toz
Metalürjisindeki (T/M) ana adımlardan biri olan sinterleme işlemi, borlama işlemi ile aynı anda gerçekleştirilmiştir. Bu sayede borlama ve sinterleme işlemleri tek adımda tamamlanmış ve mikroyapıdaki muhtemel oksit fazları da azaltılmıştır. B/S işleminden sonra sertlik ölçümleri microvickers (HV0.05) yöntemi ile yapılmış ve sertlik profilleri ve kaplama özellikleri incelenmiştir. Numuneler optik mikroskop (OM) ve alan emisyon taramalı elektron mikroskobu (FESEM) ve enerji dağıtıcı spektroskopisi (EDS) ile mikroyapı analizlerine tabi tutulmuştur. Çalışma sonucunda, yüksek saflıkta Fe tozları kullanarak T/M yöntemiyle üretilen numunelere B/S işlemi uygulanarak homojen bir mikroyapının elde edilebileceği belirlenmiştir. Elde edilen sertlik profillerinden mikroyapıda istenen koşulları sağlamak için B/S işleminin başarıyla uygulanabileceği görülmüştür.

References

  • [1] German R., Powder Metallurgy, Science, Metal Powder Industries Federation, Princeton, NJ p.2, 1984.
  • [2] Salak A., Ferrous Powder Metallurgy, Cambridge International Science Publishing, Cambridge, 1995.
  • [3] Hadrboletz A., Weiss B, Fatigue behavior of iron based sintered material: A review. Int. Mater. Rev., 42 (1), 1-44, 1997.
  • [4] Naransimhan K. S., Sintering of powder mixtures and the growth of ferrous powder metallurgy, Mater. Chem. Phys., 67 (1-3), 56-65. 2001.
  • [5] German R. M., Powder Metallurgy of Iron and Steel, New York, John Wiley & Sons Inc., 1998.
  • [6] Aneta S.N., The effect of the addition of boron on the densification, microstructure and properties of sintered 17-4 PH stainless steel, Tech. Trans. Mech., 85-96, 2-M, 2014.
  • [7] Simchi A., Pohl H. Effects of laser sintering processing parameters on the microstructure and densification of iron powder, Mater. Sci. Eng. A, 359 (1–2), 119-128, 2003.
  • [8] Bayramlı E., Gölgelioğlu Ö., Bülent E. H., Powder metal development for electrical motor applications, J. of Mater. Process. Technol., 161, (1–2), 83-88, 2005.
  • [9] ASM Handbook, Vol. 7, Powder Metallurgy., ASM International, USA, 1998.
  • [10] Sinha A. K., Boronizing, Heat Treating, ASM Int, 437– 447, 1991.
  • [11] Matuschka A. G., Boronizing C. Hanser, Munchen, 1980.
  • [12] Günen A., Koç V., Kanca E., Gök M. S., Kurt B., Kırar E., Demir M. Effect of boro-sintering process on microstructure and phase formations of P/M AISI 1010 Steel” The Int. Conf. on Mater. Sci., Mech. Auto. Eng. Techno. in Çeşme-İzmir (IMSMATEC’18), 10-12 Nisan, 2018.
  • [13] Subrahmanyam J., Gopinath K., Wear studies on boronized mild steel, Wear, 95, 287-292, 1984.
  • [14] Kusmanov S. A., Tambovskiy I. V., Sevostyanova V. S., Savushkina S.V., Belkin P.N., Anode plasma electrolytic boriding of medium carbon steel, Surf. Coat. Technol., 291, 334-341, 2016.
  • [15] Piasecki A., Kulka M., Kotkowiak M., Wear resistance improvement of 100CrMnSi6-4 bearing steel by laser boriding using CaF2 self-lubricating addition, Tribol. Int., 97, 173-191, 2016.
  • [16] Elia-Espinosa M., Ortiz-Domínguez M., Keddam M., Gómez-Vargas O. A., Arenas-Flores A., BarrientosHernández F. R., West A. R., Sinclair D. C., Boriding kinetics and mechanical behaviour of AISI O1 steel, Surf. Eng., 31 (8), 588-597, 2015.
  • [17] De Oliveira P. G. B., Aureliano R. T., Mariani F. E., Totten G., Casteletti L. C. Boriding of AISI 440B stainless steel and coating characterization, Proc. of the 29th ASM Heat Treat. Soc. Conf. 2017.
  • [18] Yang H., Wu X., Cao G., Yang Z., Enhanced boronizing kinetics and high temperature wear resistance of H13 steel with boriding treatment assisted by air blast shot peenin, Surf. Coat. Technol., 307, 506-516, 2016.
  • [19] Prince M., Arjun S. L., Surya Raj G., Gopalakrishnan P., Experimental Investigations on the Effects of Multicomponent Laser Boriding on steels. Mater. Today: Proc., 5 (11), 25276-25284, 2018.
  • [20] Keddam M., Espinosa M. E., Domínguez M. O., Simón-Marmolejo I., Pack-boriding of AISI P20 steel: Estimation of boron diffusion coefficients in the Fe2B layers and tribological behaviour, Int. J. of Surf. Sci. Eng., Vol. 11, No. 6, pp. 563-585, 2017.
  • [21] Özsoy A., Çeliğin borlanmasında borür tabakası, geçiş zonu ve ana matriksin özelliklerinin iyileştirilmesi, Anadolu Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Eskişehir, 1991.
  • [22] Topuz P., DIN 1.2842 çeliğinin borlanması ile oluşan borür tabakası üzerine borlama sıcaklık ve süresinin etkileri, BORON, 1 (1) 15-19, 2016.
  • [23] Meriç C., Şahin S., Yılmaz S. S., Investigation of the effect on boride layer of powder particle size used in boronizing with solid boron-yielding substances, Mater. Res. Bull., 35, 2165-2172, 2000.
  • [24] Fichtl W., Boronizing and its practical applications, Mater. in Eng., 2, 276-286, 1981.
  • [25] Chatterjee-Fischer R., Nitriding and nitrocarburizing Part V., Hart. -Tech. Mitt., 36 (5), 248-254, 1981.
  • [26] Dearnley P., Bell T., Engineering the surface with boron based materials, Surf. Eng., 1 (3), 203-217, 1985.
  • [27] Fichtl W. J. G., Saving Energy and Money by Boronizing, Japan Heat Treat. Assoc., Tokyo, 25 November 1988.
  • [28] Galibois A., Boutenko O., Voyzelle B., Mécanisme de formation des couches borurees sur les acıers a haut carbone technique des pates, Acta Metall., 28, 1753, 1980.
  • [29] Sarasola M., Go´mez-Acebo T., Castro F., Microstructural development during liquid phase sintering of Fe and Fe–Mo alloys containing elemental boron additions, Powder Metall., 48 (1), 59-67, 2005.
  • [30] Liu J., Cardamone A., Potter T., German R. M., Semel F. J., Liquid phase sintering of iron–carbon alloys with boron additions, Powder Metall., 43, (1), 57-61, 2000.
  • [31] Mxolisi Brendon Shongwe M. B., Diouf S., Durowoju M. O., Olubambi P. A., Effect of sintering temperature on the microstructure and mechanical properties of Fe30%Ni alloys produced by spark plasma sintering, J. of Alloys Compd., 649, 824-832, 2015.
  • [32] He X., Xiao H., Ozaydin, F. M., Balzuweit K., Liang H., Low temperature boriding of high-carbon steel, Surf. Coat. Technol., 263, 21-26, 2015. [33] Sen S., Sen U., Bindal C., The growth kinetics of borides formed on boronized AISI 4140 steel, Vacuum, 77, 195-202, 2005.
  • [34] Carbucicchio M., Palombarini G., Effects of alloying elements on the growth of iron boride coatings, J. of Mater. Sci. Lett., 6 (10), 1147-1149, 1987.
  • [35] Şeşen F. E., Özgen Ö. S., A study on electrothermochemical boronizing of an IF steel, J. of Eng. Nat. Sci., 32, 334-347, 2014.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Sinan Aksöz

Yavuz Kaplan

Engin Tan

Publication Date June 30, 2019
Acceptance Date May 29, 2019
Published in Issue Year 2019 Volume: 4 Issue: 2

Cite

APA Aksöz, S., Kaplan, Y., & Tan, E. (2019). Boro-sinterleme işleminin ham T/M parçaların mikroyapı ve sertlik özelliklerine etkilerinin incelenmesi. Journal of Boron, 4(2), 77-84. https://doi.org/10.30728/boron.487811