Research Article
BibTex RIS Cite

Güç Trafosu Arızasının Farklı Yöntemler ile Tahmini: 403 MVA’lık Bir Trafoda Uygulama ve Ekonomik Analizi

Year 2022, Volume: 3 Issue: 1, 32 - 41, 30.06.2022

Abstract

Güç trafoları (GT), güç sistemlerinin en önemli bileşenlerinden biridir. GT’ler, enerji iletim ve dağıtım sürecinde önemli bir rol oynamaktadırlar. Bu sebeple güç sistemlerinin kalitesini ve güvenilirliğini korumak için GT’lerin sürekli çalışması sağlanmalıdır. Elektrik üretim, iletim ve dağıtımından sorumlu kuruluşlar, GT’lerin sürekli çalışması için ellerinden geleni yapıyor olmalarına rağmen birçok trafo arızası yaşanmaktadır. Bu arızalar neticesinde elde edilen tecrübeler gelecekte meydana gelebilecek arızaların tespit ve giderilmesi bakımından büyük önem taşımaktadır. Bu çalışmada bir GT arızası teknik ve ekonomik açıdan derinlemesine irdelenmiştir. İncelenen GT gücü 403 MVA’dır ve kömür yakıtlı bir termik santralde yükseltici trafo olarak kullanılmaktadır. Çalışmanın ilk amacı literatürden seçilen etkin analiz yöntemleri kullanarak, 403 MVA gücündeki bu GT’de meydana gelmiş arızanın önceden tespit edilebilirliğini ortaya koymaktır. Bu kapsamda arıza yaşanan GT’den alınmış gerçek ölçüm değerleri beş adet analiz yöntemi kullanılarak değerlendirilmiştir. Çalışmanın ikinci amacı ise arıza sonucu oluşan ekonomik kaybı hesaplamak ve bu kaybın yaşanmaması için bazı önerilerde bulunmaktır. Yapılan analizler ve hesaplamalar sonucunda, bu çalışmada kullanılan analiz yöntemleri ile incelenen arızanın önceden tespit edilip, gerçekleşmeden önlenebileceği görülmüştür. Ayrıca ekonomik kaybın yaşanmaması için bazı çıkarım ve öneriler sonuç bölümünde özetlenmiştir.

References

  • Mirzai M, Gholami A, Aminifar F. Regular paper Failures Analysis and Reliability Calculation for Power Transformers. J. Electrical Systems. 2006; 2(1).
  • Wang X, Wu K, Xu Y. Research on Transformer Fault Diagnosis based on Multi-source Information Fusion,, International Journal of Control and Automation. 2014; 7(2).
  • Suna HC, Huanga YC, Huang C.M. A Review of Dissolved Gas Analysis in Power Transformers, Energy Procedia. 2012; 14.
  • Pamuk N. Güç Trafolarında Arıza Tespitine Yönelik Gelişmiş Tanı Testleri. Gaziosmanpaşa Journal of Scientific Research. 2014; 10.
  • Yaman O, Biçen Y . An Internet of Things (IoT) based Monitoring System for Oil-immersed Transformers. Balkan Journal of Electrical and Computer Engineering. 2019; 7(3).
  • Saraswati D, Marie I A, Witonohadi A. Power Transformer Failures Evaluation Using Failure Mode Effect and Criticality Analysis (FMECA) Method. Asian Journal of Engineering and Technology. 2014; 2(06).
  • Khan SA, Equbal MD, Islam T. A comprehensive comparative study of DGA based transformer fault diagnosis using fuzzy logic and ANFIS models. IEEE Transactions on Dielectrics and Electrical Insulation. 2015; 22(1).
  • Shintemirov A, Tang W, Wu Q. Power transformer fault classification based on dissolved gas analysis by implementing bootstrap and genetic programming. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2009; 39(1).
  • Rogers R. IEEE and IEC codes to interpret incipient faults in transformers, using gas in oil analysis. IEEE transactions on electrical insulation. 1978; 5.
  • Standard I. 60599. Guide for the interpretation of dissolved gas analysis and gas-free. 2007.
  • Duval MA. review of faults detectable by gas-in-oil analysis in transformers. IEEE electrical Insulation magazine. 2002; 18(3).
  • Duval M, Dukarm J. Improving the reliability of transformer gas-in-oil diagnosis. IEEE electrical Insulation magazine, 2005, 21(4).
  • Mollmann A, Pahlavanpour B. New guidelines for interpretation of dissolved gas analysis in oil-filled transformers. Electra. 1999; 186.
  • Sun HC, Huang YC, Huang CM. A review of dissolved gas analysis in power transformers. Energy Procedia. 2012; 14.
  • Bacha K, Souahlia S, Gossa M. Power transformer fault diagnosis based on dissolved gas analysis by support vector machine. Electric power systems research. 2012; 83(1).
  • Faria Jr H, Costa JGS, Olivas JLM. A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis. Renewable and sustainable energy reviews. 2015; 46.
  • Singh S, Bandyopadhyay M. Duval triangle: A noble technique for DGA in power transformers. International journal of electrical and power engineering. 2010; 4(3).
  • Liu Z, Song B, Li E, Mao Y, Wang G. Study of "code absence" in the IEC three-ratio method of dissolved gas analysis, IEEE Electrical Insulation Magazine. 2015; 31(6).
  • Kaya K, Koç E. Enerji Üretim Santralleri Maliyet Analizi, Engineer & the Machinery Magazine. 2015; 660.

Forecasting power transformer failure using different methods: An application on a 403 MVA transformer and an economic analysis

Year 2022, Volume: 3 Issue: 1, 32 - 41, 30.06.2022

Abstract

Power transformers (PT) are one of the most important components of power systems. PTs take a major role in energy transmission and distribution processes. So continuous operation of PTs must be ensured to maintain the power systems quality and reliability. Although the organizations responsible for electricity generation, transmission and distribution have done their best to obtain continuous transformer operation, many transformer failures have been witnessed. The experiences obtained from the result of these failures are of great importance in terms of detecting and eliminating the faults that may occur in the future. In this study, a PT failure is deeply investigated from technical and economic point of views. Investigated PT has 403 MVA installed power and it is the step-up transformer of a thermal power plant. The first aim of the study is to determine the predeterminable of the failure in this PT with 403 MVA power using the effective analysis methods selected from the literature. In this context, an actual measurement values obtained from PT were evaluated using five analysis methods. The second aim of the study is to calculate the economic loss due to failure and to make some suggestions to avoid this loss. As a result of the analyzes and calculations, it was seen that the failure could be detected and prevented before occurrence by the analysis methods used in this study. In addition, some inferences and recommendations in order to prevent economic loss are summarized in the conclusion section.

References

  • Mirzai M, Gholami A, Aminifar F. Regular paper Failures Analysis and Reliability Calculation for Power Transformers. J. Electrical Systems. 2006; 2(1).
  • Wang X, Wu K, Xu Y. Research on Transformer Fault Diagnosis based on Multi-source Information Fusion,, International Journal of Control and Automation. 2014; 7(2).
  • Suna HC, Huanga YC, Huang C.M. A Review of Dissolved Gas Analysis in Power Transformers, Energy Procedia. 2012; 14.
  • Pamuk N. Güç Trafolarında Arıza Tespitine Yönelik Gelişmiş Tanı Testleri. Gaziosmanpaşa Journal of Scientific Research. 2014; 10.
  • Yaman O, Biçen Y . An Internet of Things (IoT) based Monitoring System for Oil-immersed Transformers. Balkan Journal of Electrical and Computer Engineering. 2019; 7(3).
  • Saraswati D, Marie I A, Witonohadi A. Power Transformer Failures Evaluation Using Failure Mode Effect and Criticality Analysis (FMECA) Method. Asian Journal of Engineering and Technology. 2014; 2(06).
  • Khan SA, Equbal MD, Islam T. A comprehensive comparative study of DGA based transformer fault diagnosis using fuzzy logic and ANFIS models. IEEE Transactions on Dielectrics and Electrical Insulation. 2015; 22(1).
  • Shintemirov A, Tang W, Wu Q. Power transformer fault classification based on dissolved gas analysis by implementing bootstrap and genetic programming. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 2009; 39(1).
  • Rogers R. IEEE and IEC codes to interpret incipient faults in transformers, using gas in oil analysis. IEEE transactions on electrical insulation. 1978; 5.
  • Standard I. 60599. Guide for the interpretation of dissolved gas analysis and gas-free. 2007.
  • Duval MA. review of faults detectable by gas-in-oil analysis in transformers. IEEE electrical Insulation magazine. 2002; 18(3).
  • Duval M, Dukarm J. Improving the reliability of transformer gas-in-oil diagnosis. IEEE electrical Insulation magazine, 2005, 21(4).
  • Mollmann A, Pahlavanpour B. New guidelines for interpretation of dissolved gas analysis in oil-filled transformers. Electra. 1999; 186.
  • Sun HC, Huang YC, Huang CM. A review of dissolved gas analysis in power transformers. Energy Procedia. 2012; 14.
  • Bacha K, Souahlia S, Gossa M. Power transformer fault diagnosis based on dissolved gas analysis by support vector machine. Electric power systems research. 2012; 83(1).
  • Faria Jr H, Costa JGS, Olivas JLM. A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis. Renewable and sustainable energy reviews. 2015; 46.
  • Singh S, Bandyopadhyay M. Duval triangle: A noble technique for DGA in power transformers. International journal of electrical and power engineering. 2010; 4(3).
  • Liu Z, Song B, Li E, Mao Y, Wang G. Study of "code absence" in the IEC three-ratio method of dissolved gas analysis, IEEE Electrical Insulation Magazine. 2015; 31(6).
  • Kaya K, Koç E. Enerji Üretim Santralleri Maliyet Analizi, Engineer & the Machinery Magazine. 2015; 660.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Ceyhun Yıldız 0000-0002-5498-4127

İbrahim Çelik 0000-0001-5923-554X

Mustafa Şekkeli 0000-0002-1641-3243

Early Pub Date June 25, 2022
Publication Date June 30, 2022
Submission Date April 22, 2022
Published in Issue Year 2022 Volume: 3 Issue: 1

Cite

Vancouver Yıldız C, Çelik İ, Şekkeli M. Güç Trafosu Arızasının Farklı Yöntemler ile Tahmini: 403 MVA’lık Bir Trafoda Uygulama ve Ekonomik Analizi. BUTS. 2022;3(1):32-41.
This journal is prepared and published by the Bingöl University Technical Sciences journal team.