Research Article
BibTex RIS Cite
Year 2022, Volume: 5 Issue: 4, 170 - 179, 30.12.2022
https://doi.org/10.33434/cams.1180773

Abstract

References

  • [1] ˙I. Akc¸a, U. E. Arslan, Categorification of algebras:2-algebras, Ikonion J. Math., Submitted.
  • [2] ˙I. Akc¸a, K. Emir , F. M. Martins, Pointed homotopy of maps between 2-crossed modules of commutative algebras, Homol. Homotopy Appl., 18(1)(2016), 99-128.
  • [3] Z. Arvasi , U. Ege , Annihilators, multipliers and crossed modules, Appl. Categ. Struct., 11 (2003), 487-506.
  • [4] J. C. Baez , A. S. Crans , Higher dimensional algebra VI: Lie 2-Algebras, Theory Appl. Categ., 12(15) (2004), 492-538.
  • [5] H. J. Baues , Combinatorial Homotopy and 4-Dimensional Complexes, Berlin etc.: Walter de Gruyter, 1991.
  • [6] R. Brown , M. Golasinski, A model structure for the homotopy theory of crossed complexes, Cah. Topologie Geom. Diff´er. Cat´egoriques, 30(1) (1989),61-82.
  • [7] R. Brown , C. Spencer , G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Kon. Ned. Akad.v. Wet, 79 (1976), 296-302.
  • [8] F. Borceux , Handbook of Categorical Algebra 1: Basic Category Theory, Cambridge, Cambridge U. Press, 1994.
  • [9] J. G. Cabello, A. R. Garz´on, Closed model structures for algebraic models of n-types, J. Pure Appl. Algebra, 103(3) (1995), 287-302.
  • [10] C. Ehresmann ,Categories structures, Ann. Ec. Normale Sup., 80 (1963).
  • [11] C. Elvira-Donazar, L. J. Hernandez-Paricio, Closed model categories for the n-type of spaces and simplicial sets, Math. Proc. Camb. Philos. Soc., 118(7) (1995), 93-103.
  • [12] J. W. Gray, Formal Category Theory Adjointness for 2-Categories, Lecture Notes in Math 391, Springer-Verlag, 1974.
  • [13] ˙I.˙Ic¸en , The equivalence of 2-groupoids and crossed modules, Commun. Fac. Sci, Univ. Ank. Series A1, 49 (2000), 39-48.
  • [14] E. Khmaladze, On associative and Lie 2-algebras, Proc. A. Razmadze Math. Inst., 159 (2012), 57-64.
  • [15] J. L. Loday, Spaces with finitely many non-trivial homotopy groups, J. Pure Appl. Alg., 24 (1982), 179-202.
  • [16] A. S. T. Lue, Semi-complete crossed modules and holomorphs of groups, Bull. London Math. Soc., 11 (1979), 8-16.
  • [17] S. Mac Lane, Extension and obstructures for rings, Illinois J. Math., 121 (1958), 316-345.
  • [18] K. J. Norrie, Actions and automorphisms of crossed modules, Bull. Soc. Math. France, 118 (1990), 129-146.
  • [19] T. Porter, Some categorical results in the theory of crossed modules in commutative algebras, J. Algebra, 109 (1987), 415-429.
  • [20] T. Porter , The Crossed Menagerie: An Introduction to Crossed Gadgetry and Cohomology in Algebra and Topology, http://ncatlab.org/timporter/files/menagerie10.pdf

Homotopies of 2-Algebra Morphisms

Year 2022, Volume: 5 Issue: 4, 170 - 179, 30.12.2022
https://doi.org/10.33434/cams.1180773

Abstract

In [1] it is defined the notion of 2-algebra as a categorification of algebras, and shown that the category of strict 2-algebras is equivalent to the category of crossed modules in commutative algebras. In this paper we define the notion of homotopy for 2-algebras and we explore the relations of crossed module homotopy and 2-algebra homotopy.

References

  • [1] ˙I. Akc¸a, U. E. Arslan, Categorification of algebras:2-algebras, Ikonion J. Math., Submitted.
  • [2] ˙I. Akc¸a, K. Emir , F. M. Martins, Pointed homotopy of maps between 2-crossed modules of commutative algebras, Homol. Homotopy Appl., 18(1)(2016), 99-128.
  • [3] Z. Arvasi , U. Ege , Annihilators, multipliers and crossed modules, Appl. Categ. Struct., 11 (2003), 487-506.
  • [4] J. C. Baez , A. S. Crans , Higher dimensional algebra VI: Lie 2-Algebras, Theory Appl. Categ., 12(15) (2004), 492-538.
  • [5] H. J. Baues , Combinatorial Homotopy and 4-Dimensional Complexes, Berlin etc.: Walter de Gruyter, 1991.
  • [6] R. Brown , M. Golasinski, A model structure for the homotopy theory of crossed complexes, Cah. Topologie Geom. Diff´er. Cat´egoriques, 30(1) (1989),61-82.
  • [7] R. Brown , C. Spencer , G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Kon. Ned. Akad.v. Wet, 79 (1976), 296-302.
  • [8] F. Borceux , Handbook of Categorical Algebra 1: Basic Category Theory, Cambridge, Cambridge U. Press, 1994.
  • [9] J. G. Cabello, A. R. Garz´on, Closed model structures for algebraic models of n-types, J. Pure Appl. Algebra, 103(3) (1995), 287-302.
  • [10] C. Ehresmann ,Categories structures, Ann. Ec. Normale Sup., 80 (1963).
  • [11] C. Elvira-Donazar, L. J. Hernandez-Paricio, Closed model categories for the n-type of spaces and simplicial sets, Math. Proc. Camb. Philos. Soc., 118(7) (1995), 93-103.
  • [12] J. W. Gray, Formal Category Theory Adjointness for 2-Categories, Lecture Notes in Math 391, Springer-Verlag, 1974.
  • [13] ˙I.˙Ic¸en , The equivalence of 2-groupoids and crossed modules, Commun. Fac. Sci, Univ. Ank. Series A1, 49 (2000), 39-48.
  • [14] E. Khmaladze, On associative and Lie 2-algebras, Proc. A. Razmadze Math. Inst., 159 (2012), 57-64.
  • [15] J. L. Loday, Spaces with finitely many non-trivial homotopy groups, J. Pure Appl. Alg., 24 (1982), 179-202.
  • [16] A. S. T. Lue, Semi-complete crossed modules and holomorphs of groups, Bull. London Math. Soc., 11 (1979), 8-16.
  • [17] S. Mac Lane, Extension and obstructures for rings, Illinois J. Math., 121 (1958), 316-345.
  • [18] K. J. Norrie, Actions and automorphisms of crossed modules, Bull. Soc. Math. France, 118 (1990), 129-146.
  • [19] T. Porter, Some categorical results in the theory of crossed modules in commutative algebras, J. Algebra, 109 (1987), 415-429.
  • [20] T. Porter , The Crossed Menagerie: An Introduction to Crossed Gadgetry and Cohomology in Algebra and Topology, http://ncatlab.org/timporter/files/menagerie10.pdf
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

İbrahim Akça

Ummahan Ege Arslan

Publication Date December 30, 2022
Submission Date September 27, 2022
Acceptance Date November 21, 2022
Published in Issue Year 2022 Volume: 5 Issue: 4

Cite

APA Akça, İ., & Ege Arslan, U. (2022). Homotopies of 2-Algebra Morphisms. Communications in Advanced Mathematical Sciences, 5(4), 170-179. https://doi.org/10.33434/cams.1180773
AMA Akça İ, Ege Arslan U. Homotopies of 2-Algebra Morphisms. Communications in Advanced Mathematical Sciences. December 2022;5(4):170-179. doi:10.33434/cams.1180773
Chicago Akça, İbrahim, and Ummahan Ege Arslan. “Homotopies of 2-Algebra Morphisms”. Communications in Advanced Mathematical Sciences 5, no. 4 (December 2022): 170-79. https://doi.org/10.33434/cams.1180773.
EndNote Akça İ, Ege Arslan U (December 1, 2022) Homotopies of 2-Algebra Morphisms. Communications in Advanced Mathematical Sciences 5 4 170–179.
IEEE İ. Akça and U. Ege Arslan, “Homotopies of 2-Algebra Morphisms”, Communications in Advanced Mathematical Sciences, vol. 5, no. 4, pp. 170–179, 2022, doi: 10.33434/cams.1180773.
ISNAD Akça, İbrahim - Ege Arslan, Ummahan. “Homotopies of 2-Algebra Morphisms”. Communications in Advanced Mathematical Sciences 5/4 (December 2022), 170-179. https://doi.org/10.33434/cams.1180773.
JAMA Akça İ, Ege Arslan U. Homotopies of 2-Algebra Morphisms. Communications in Advanced Mathematical Sciences. 2022;5:170–179.
MLA Akça, İbrahim and Ummahan Ege Arslan. “Homotopies of 2-Algebra Morphisms”. Communications in Advanced Mathematical Sciences, vol. 5, no. 4, 2022, pp. 170-9, doi:10.33434/cams.1180773.
Vancouver Akça İ, Ege Arslan U. Homotopies of 2-Algebra Morphisms. Communications in Advanced Mathematical Sciences. 2022;5(4):170-9.

Creative Commons License   The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..