Research Article
BibTex RIS Cite
Year 2014, Volume: 11 Issue: 1, - , 01.05.2014

Abstract

References

  • [1] S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D thesis, Shanghai Jiao Tong University, (1992).
  • [2] S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC Press, Boca Raton, (2003).
  • [3] S. J. Liao, Homotopy analysis method: A new analytical technique for nonlinear problems, Commun. Nonlinear Sci. Numer. Simulat. 2(2), (1997), 95-100.
  • [4] S. J. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147, (2004), 499-513.
  • [5] S. J. Liao, Notes on the homotopy analysis method: Some definitions and theorems, Commun. Nonlinear Sci. Numer. Simulat., 14, (2009), 983-997.
  • [6] S. Abbasbandy, The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation, Phys. Lett. A, 361, (2007), 478-483.
  • [7] E. Babolian, J. Saeidian, Analytic approximate solutions to Burgers, Fisher, Huxley equations and two combined forms of these eqautions, Commun. Nonlinear. Sci. Numer. Simulat., 14, (2009), 1984-1992.
  • [8] A. Fakhari, G. Domairry, Ebrahimpour, Approximate explicit solutions of nonlinear BBMB equations by homotopy analysis method and comparison with the exact solution, Phys. Lett. A, 368, (2007), 64-68.
  • [9] M. M. Rashidi, G. Domairry, A. DoostHosseini, S. Dinarvand, Explicit Approximate Solution of the Coupled KdV Equations by using the Homotopy Analysis Method, Int. Journal of Math. Analysis, 2(12), (2008), 581-589.
  • [10] M. Inc, On numerical solution of Burgers equation by homotopy analysis method, Phys Lett A, 372, (2008), 356-360.
  • [11] A. S. Bataineh, M. S. M. Noorani, I. Hashim, Approximate analytical solutions of systems of PDEs by homotopy analysis method, Comp. Math. Appl., 55, (2008), 2913-2923.
  • [12] S. Abbasbandy, The application of homotopy analysis method to nonlinear equations arising in heat transfer, Phys. Lett. A, 360, (2006), 109-113.
  • [13] T. Hayat, M. Sajid, On analytic solution for thin film flow of a forth grade fluid down a vertical cylinder, Phys. Lett. A, 361, (2007), 316-322.
  • [14] S. J. Liao, A. Y. Tan, A general approach to obtain series solutions of nonlinear differential equations, Commun. Nonlinear. Sci. Numer. Simulat., 14, (2009), 983-997.
  • [15] A. Esen, O. Tas¸bozan and N.M. Ya˘gmurlu, Approximate Analytical Solutions of the Fractional Sharmo-TassoOlver Equation Using Homotopy Analysis Method and a Comparison with Other Methods, C¸ ankaya University Journal of Science and Engineering, 9(2), (2012), 139-147.
  • [16] A. Esen, N.M. Ya˘gmurlu and O. Tas¸bozan, Approximate Analytical Solution to Time-Fractional Damped Burger and Cahn-Allen Equations, Applied Mathematics Information Sciences, 7(5), (2013), 1951-1956.
  • [17] O. Tas¸bozan, A. Esen and N.M. Ya˘gmurlu, Approximate analytical solutions of fractional coupled mKdV equation by homotopy analysis method, Open Journal of Applied Science, 2(3), (2012), 193-197.
  • [18] P. L. Sachdev, Nonlinear Diffusive Waves, Cambridge University Press, (1987).
  • [19] W. Malfliet, Approximate solution of the damped Burgers equation, J. Phys. A: Math. Gen., 26, (1993), L723- L728.
  • [20] Y. Peng, W. Chen, A new similarity solution of the Burgers equation with linear damping Czech. J, Phys., 56, (2008), 317-428.
  • [21] B. M. Vaganan, M. S. Kumaran, Similarity Solutions of the Burgers Equation with linear damping, Appl. Math. Lett. 17, (2004), 1191-1196.
  • [22] B. M. Vaganan, M. S. Kumaran, Kummer function solutions of damped Burgers equations with time-dependent viscosity by exact linearization, Nonlinear Anal. Real World Appl., 4, (2003), 723-741.
  • [23] X. M. Li, A. H. Chen, Darboux transformation and multi-soliton solutions of Boussinesq-Burgers equation, Phys. Lett. A, 342, (2005), 413-420.
  • [24] L. Gao, W. Xu, Y. Tang, G. Meng, New families of travelling wave solutions for Boussinesq-Burgers equation and (3 +1)-dimensional Kadomtsev-Petviashvili equation, Phys. Lett. A, 366, (2007), 411-421.
  • [25] A. S. A. Rady, M. Khalfallah, On soliton solutions for Boussinesq-Burgers equations, Commun. Nonlinear Sci. Numer. Simulat., 15, (2010), 886-894.

Approximate Analytical Solution of the Damped Burgers and Boussinesq-Burgers Equations

Year 2014, Volume: 11 Issue: 1, - , 01.05.2014

Abstract

In this paper, the Homotopy Analysis Method (HAM) is applied to the damped Burgers and
Boussinesq-Burgers equations to obtain their approximate analytical solutions. The HAM solution includes
an auxiliary parameter h¯ which provides a convenient way to adjust and control the convergence region of the
solution series. An appropriate choice of the auxiliary parameter in the model problems for increasing time
is investigated.

References

  • [1] S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D thesis, Shanghai Jiao Tong University, (1992).
  • [2] S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC Press, Boca Raton, (2003).
  • [3] S. J. Liao, Homotopy analysis method: A new analytical technique for nonlinear problems, Commun. Nonlinear Sci. Numer. Simulat. 2(2), (1997), 95-100.
  • [4] S. J. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147, (2004), 499-513.
  • [5] S. J. Liao, Notes on the homotopy analysis method: Some definitions and theorems, Commun. Nonlinear Sci. Numer. Simulat., 14, (2009), 983-997.
  • [6] S. Abbasbandy, The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation, Phys. Lett. A, 361, (2007), 478-483.
  • [7] E. Babolian, J. Saeidian, Analytic approximate solutions to Burgers, Fisher, Huxley equations and two combined forms of these eqautions, Commun. Nonlinear. Sci. Numer. Simulat., 14, (2009), 1984-1992.
  • [8] A. Fakhari, G. Domairry, Ebrahimpour, Approximate explicit solutions of nonlinear BBMB equations by homotopy analysis method and comparison with the exact solution, Phys. Lett. A, 368, (2007), 64-68.
  • [9] M. M. Rashidi, G. Domairry, A. DoostHosseini, S. Dinarvand, Explicit Approximate Solution of the Coupled KdV Equations by using the Homotopy Analysis Method, Int. Journal of Math. Analysis, 2(12), (2008), 581-589.
  • [10] M. Inc, On numerical solution of Burgers equation by homotopy analysis method, Phys Lett A, 372, (2008), 356-360.
  • [11] A. S. Bataineh, M. S. M. Noorani, I. Hashim, Approximate analytical solutions of systems of PDEs by homotopy analysis method, Comp. Math. Appl., 55, (2008), 2913-2923.
  • [12] S. Abbasbandy, The application of homotopy analysis method to nonlinear equations arising in heat transfer, Phys. Lett. A, 360, (2006), 109-113.
  • [13] T. Hayat, M. Sajid, On analytic solution for thin film flow of a forth grade fluid down a vertical cylinder, Phys. Lett. A, 361, (2007), 316-322.
  • [14] S. J. Liao, A. Y. Tan, A general approach to obtain series solutions of nonlinear differential equations, Commun. Nonlinear. Sci. Numer. Simulat., 14, (2009), 983-997.
  • [15] A. Esen, O. Tas¸bozan and N.M. Ya˘gmurlu, Approximate Analytical Solutions of the Fractional Sharmo-TassoOlver Equation Using Homotopy Analysis Method and a Comparison with Other Methods, C¸ ankaya University Journal of Science and Engineering, 9(2), (2012), 139-147.
  • [16] A. Esen, N.M. Ya˘gmurlu and O. Tas¸bozan, Approximate Analytical Solution to Time-Fractional Damped Burger and Cahn-Allen Equations, Applied Mathematics Information Sciences, 7(5), (2013), 1951-1956.
  • [17] O. Tas¸bozan, A. Esen and N.M. Ya˘gmurlu, Approximate analytical solutions of fractional coupled mKdV equation by homotopy analysis method, Open Journal of Applied Science, 2(3), (2012), 193-197.
  • [18] P. L. Sachdev, Nonlinear Diffusive Waves, Cambridge University Press, (1987).
  • [19] W. Malfliet, Approximate solution of the damped Burgers equation, J. Phys. A: Math. Gen., 26, (1993), L723- L728.
  • [20] Y. Peng, W. Chen, A new similarity solution of the Burgers equation with linear damping Czech. J, Phys., 56, (2008), 317-428.
  • [21] B. M. Vaganan, M. S. Kumaran, Similarity Solutions of the Burgers Equation with linear damping, Appl. Math. Lett. 17, (2004), 1191-1196.
  • [22] B. M. Vaganan, M. S. Kumaran, Kummer function solutions of damped Burgers equations with time-dependent viscosity by exact linearization, Nonlinear Anal. Real World Appl., 4, (2003), 723-741.
  • [23] X. M. Li, A. H. Chen, Darboux transformation and multi-soliton solutions of Boussinesq-Burgers equation, Phys. Lett. A, 342, (2005), 413-420.
  • [24] L. Gao, W. Xu, Y. Tang, G. Meng, New families of travelling wave solutions for Boussinesq-Burgers equation and (3 +1)-dimensional Kadomtsev-Petviashvili equation, Phys. Lett. A, 366, (2007), 411-421.
  • [25] A. S. A. Rady, M. Khalfallah, On soliton solutions for Boussinesq-Burgers equations, Commun. Nonlinear Sci. Numer. Simulat., 15, (2010), 886-894.
There are 25 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Alaattin Esen

Orkun Taşbozan This is me

Selçuk Kutluay

Publication Date May 1, 2014
Published in Issue Year 2014 Volume: 11 Issue: 1

Cite

APA Esen, A., Taşbozan, O., & Kutluay, S. (2014). Approximate Analytical Solution of the Damped Burgers and Boussinesq-Burgers Equations. Cankaya University Journal of Science and Engineering, 11(1).
AMA Esen A, Taşbozan O, Kutluay S. Approximate Analytical Solution of the Damped Burgers and Boussinesq-Burgers Equations. CUJSE. May 2014;11(1).
Chicago Esen, Alaattin, Orkun Taşbozan, and Selçuk Kutluay. “Approximate Analytical Solution of the Damped Burgers and Boussinesq-Burgers Equations”. Cankaya University Journal of Science and Engineering 11, no. 1 (May 2014).
EndNote Esen A, Taşbozan O, Kutluay S (May 1, 2014) Approximate Analytical Solution of the Damped Burgers and Boussinesq-Burgers Equations. Cankaya University Journal of Science and Engineering 11 1
IEEE A. Esen, O. Taşbozan, and S. Kutluay, “Approximate Analytical Solution of the Damped Burgers and Boussinesq-Burgers Equations”, CUJSE, vol. 11, no. 1, 2014.
ISNAD Esen, Alaattin et al. “Approximate Analytical Solution of the Damped Burgers and Boussinesq-Burgers Equations”. Cankaya University Journal of Science and Engineering 11/1 (May 2014).
JAMA Esen A, Taşbozan O, Kutluay S. Approximate Analytical Solution of the Damped Burgers and Boussinesq-Burgers Equations. CUJSE. 2014;11.
MLA Esen, Alaattin et al. “Approximate Analytical Solution of the Damped Burgers and Boussinesq-Burgers Equations”. Cankaya University Journal of Science and Engineering, vol. 11, no. 1, 2014.
Vancouver Esen A, Taşbozan O, Kutluay S. Approximate Analytical Solution of the Damped Burgers and Boussinesq-Burgers Equations. CUJSE. 2014;11(1).