Parametric generalization of the modified Bernstein-Kantorovich operators
Year 2024,
, 460 - 473, 21.06.2024
Kadir Kanat
,
Melek Sofyalıoğlu
,
Selin Erdal
Abstract
In the current article, a parametrization of the modified Bernstein-Kantorovich operators is studied. Then the Korovkin theorem, approximation properties and central moments of these operators are investigated. The rate of approximation of the operators is obtained by the help of modulus of continuity, functions from Lipschitz class and Peetre-$\mathcal{K}$ functional. Finally, some numerical examples are illustrated to show the effectiveness of the newly defined operators.
References
- Altomare, F., Campiti, M., Korovkin-Type Approximation Theory and Its Applications, De Gruyter Series Studies in Mathematics, Vol. 17, Walter de Gruyter, Berlin-New York, 1994, 266-274.
- Aral, A., Erbay, H., Parametric generalization of Baskakov operators, Math. Commun., 24 (2019), 119–131.
- Bernstein, S. N., Demonstration du theorem de Weierstrass fondee sur le calculu des probabilites, Commun. Kharkov Math. Soc., 13(2) (1912), 1–2.
- Cai, Q.-B., Lian, B.-Y., Zhou, G., Approximation properties of $\lambda$-Bernstein operators, J. Inequal. Appl., 2018(61) (2018).
- Cai, Q.-B., Aslan, R., On a new construction of generalized q-Bernstein polynomials based on shape parameter $\lambda$, Symmetry, 13(1919) (2021). https://doi.org/10.3390/sym13101919
- Cai, Q.-B., Aslan, R., Note on a new construction of Kantorovich form q-Bernstein operators related to shape parameter $\lambda$, Computer Modeling in Engineering Sciences, 130(3) (2022), 1479-1493. DOI:10.32604/cmes.2022.018338
- Chen, X., Tan, J., Liu, Z., Xie, J., Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl., 450 (2017), 244-261.
- Çekim, B., Aktaş, R., Taşdelen, F., A Dunkl-Gamma type operator in terms of generalization of two-variable Hermite polynomials, Indian J. Pure Appl. Math., 53 (2022), 727-735. https://doi.org/10.1007/s13226-021-00167-9
- Kadak, U., Özger, F., A numerical comparative study of generalized Bernstein-Kantorovich operators, Mathematical Foundations of Computing., 4(4) (2021), 311-332. doi:10.3934/mfc.2021021
- Kajla, A., Mursaleen, M., Acar, T., Durrmeyer-Type generalization of parametric Bernstein operators, Symmetry, 12(7) (2020), 1141. https://doi.org/10.3390/sym12071141
- Korovkin, P. P., On convergence of linear operators in the space of continuous functions (Russian), Dokl. Akad. Nauk. SSSR (N.S.), 90 (1953), 961-964.
- Mohiuddine, S. A., Ahmad, N., Özger, F., Alotaibi, A., Hazarika, B., Approximation by the parametric generalization of Baskakov-Kantorovich operators linking with Stancu operators, Iran. J. Sci. Technol. Trans. Sci., 45 (2021), 593-605. https://doi.org/10.1007/s40995-020-01024-w
- Mohiuddine, S. A., Özger, F., Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter $\alpha$, RACSAM, 114(70) (2020).
- Özger, F., Weighted statistical approximation properties of univariate and bivariate $\lambda$-Kantorovich operators, Filomat, 33(11) (2019), 3473-3486.
- Sofyalıoğlu, M., Kanat, K., Çekim, B., Parametric generalization of the modified Bernstein operators, Filomat, 36(5) (2022), 1699-1709.
- Srivastava, H. M., Özger, F., Mohiuddine, S. A., Construction of Stancu-type Bernstein operators based on Bezier bases with shape parameter $\lambda$, Symmetry, 11(3) Article 316 (2019).
- Srivastava, H. M., Ansari, K. J., Özger, F., Ödemiş Özger, Z., A link between approximation theory and summability methods via four-dimensional infinite matrices, Mathematics, 9(16) (2021), 1895. https://doi.org/10.3390/math9161895
- Usta, F., On new modification of Bernstein operators: theory and applications, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 1119–1124 .
- Weierstrass, V. K., Über die analytische Darstellbarkeit sogennanter willkürlicher Functionen einer reellen Veranderlichen, Sitzungsberichte der Akademie zu Berlin, (1885), 633-639 & 789-805.
- Ansari, K. J., Özger, F., Ödemiş Özger, Z., Numerical and theoretical approximation results for Schurer-Stancu operators with shape parameter $\lambda$, Computational and Applied Mathematics, 41(181) (2022). https://doi.org/10.1007/s40314-022-01877-4
- Özger, F., Aljimi, E., Temizer Ersoy, M., Rate of weighted statistical convergence for generalized Blending-Type Bernstein-Kantorovich operators, Mathematics, 10(12) (2022), 2027. https://doi.org/10.3390/math10122027
Year 2024,
, 460 - 473, 21.06.2024
Kadir Kanat
,
Melek Sofyalıoğlu
,
Selin Erdal
References
- Altomare, F., Campiti, M., Korovkin-Type Approximation Theory and Its Applications, De Gruyter Series Studies in Mathematics, Vol. 17, Walter de Gruyter, Berlin-New York, 1994, 266-274.
- Aral, A., Erbay, H., Parametric generalization of Baskakov operators, Math. Commun., 24 (2019), 119–131.
- Bernstein, S. N., Demonstration du theorem de Weierstrass fondee sur le calculu des probabilites, Commun. Kharkov Math. Soc., 13(2) (1912), 1–2.
- Cai, Q.-B., Lian, B.-Y., Zhou, G., Approximation properties of $\lambda$-Bernstein operators, J. Inequal. Appl., 2018(61) (2018).
- Cai, Q.-B., Aslan, R., On a new construction of generalized q-Bernstein polynomials based on shape parameter $\lambda$, Symmetry, 13(1919) (2021). https://doi.org/10.3390/sym13101919
- Cai, Q.-B., Aslan, R., Note on a new construction of Kantorovich form q-Bernstein operators related to shape parameter $\lambda$, Computer Modeling in Engineering Sciences, 130(3) (2022), 1479-1493. DOI:10.32604/cmes.2022.018338
- Chen, X., Tan, J., Liu, Z., Xie, J., Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl., 450 (2017), 244-261.
- Çekim, B., Aktaş, R., Taşdelen, F., A Dunkl-Gamma type operator in terms of generalization of two-variable Hermite polynomials, Indian J. Pure Appl. Math., 53 (2022), 727-735. https://doi.org/10.1007/s13226-021-00167-9
- Kadak, U., Özger, F., A numerical comparative study of generalized Bernstein-Kantorovich operators, Mathematical Foundations of Computing., 4(4) (2021), 311-332. doi:10.3934/mfc.2021021
- Kajla, A., Mursaleen, M., Acar, T., Durrmeyer-Type generalization of parametric Bernstein operators, Symmetry, 12(7) (2020), 1141. https://doi.org/10.3390/sym12071141
- Korovkin, P. P., On convergence of linear operators in the space of continuous functions (Russian), Dokl. Akad. Nauk. SSSR (N.S.), 90 (1953), 961-964.
- Mohiuddine, S. A., Ahmad, N., Özger, F., Alotaibi, A., Hazarika, B., Approximation by the parametric generalization of Baskakov-Kantorovich operators linking with Stancu operators, Iran. J. Sci. Technol. Trans. Sci., 45 (2021), 593-605. https://doi.org/10.1007/s40995-020-01024-w
- Mohiuddine, S. A., Özger, F., Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter $\alpha$, RACSAM, 114(70) (2020).
- Özger, F., Weighted statistical approximation properties of univariate and bivariate $\lambda$-Kantorovich operators, Filomat, 33(11) (2019), 3473-3486.
- Sofyalıoğlu, M., Kanat, K., Çekim, B., Parametric generalization of the modified Bernstein operators, Filomat, 36(5) (2022), 1699-1709.
- Srivastava, H. M., Özger, F., Mohiuddine, S. A., Construction of Stancu-type Bernstein operators based on Bezier bases with shape parameter $\lambda$, Symmetry, 11(3) Article 316 (2019).
- Srivastava, H. M., Ansari, K. J., Özger, F., Ödemiş Özger, Z., A link between approximation theory and summability methods via four-dimensional infinite matrices, Mathematics, 9(16) (2021), 1895. https://doi.org/10.3390/math9161895
- Usta, F., On new modification of Bernstein operators: theory and applications, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 1119–1124 .
- Weierstrass, V. K., Über die analytische Darstellbarkeit sogennanter willkürlicher Functionen einer reellen Veranderlichen, Sitzungsberichte der Akademie zu Berlin, (1885), 633-639 & 789-805.
- Ansari, K. J., Özger, F., Ödemiş Özger, Z., Numerical and theoretical approximation results for Schurer-Stancu operators with shape parameter $\lambda$, Computational and Applied Mathematics, 41(181) (2022). https://doi.org/10.1007/s40314-022-01877-4
- Özger, F., Aljimi, E., Temizer Ersoy, M., Rate of weighted statistical convergence for generalized Blending-Type Bernstein-Kantorovich operators, Mathematics, 10(12) (2022), 2027. https://doi.org/10.3390/math10122027