Research Article
BibTex RIS Cite

Quasi-subordination and coefficient bounds for certain classes of meromorphic functions of complex order

Year 2019, , 1197 - 1205, 01.02.2019
https://doi.org/10.31801/cfsuasmas.513114

Abstract

In this paper, we obtain Fekete-Szegö functional |a₁-μa₀²| for functions of the classes Σ_{q}^{∗}(ϕ) and Σ_{q,λ,b}^{∗}(g,ϕ) using quasi-subordination. Sharp bounds for the Fekete-Szegö functional |a₁-μa₀²| are obtained. Also, applications of the main results for subclasses of functions defined by Bessel function are also considered.

References

  • Aouf, M. K., El-Ashwah R. M. and Zayed, H. M., Fekete--Szego inequalities for certain class of meromorphic functions, J. Egyptian Math. Soc., 21 (2013), 197--200.
  • Aouf, M. K., Mostafa, A. O. and Zayed, H. M., Convolution properties for some subclasses of meromorphic functions of complex order, Abstr. Appl. Anal., 2015 (2015), 1-6.
  • Baricz, A., Generalized Bessel Functions of the First Kind, Lecture Notes in Math., Vol. 1994, Springer-Verlag, Berlin, 2010.
  • Baricz, A., Deniz, E., Caglar, M. and Orhan, H., Differential subordinations involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc., 38 (2015), no. 3, 1255-1280.
  • Deniz, E., Differential subordination and superordination results for an operator associated with the generalized Bessel function, Preprint.
  • Goyal, S. P. and Goswami, P., Majorization for certain classes of meromorphic functions defined by integral operator, Ann. Univ. Mariae Curie Sklodowska Lublin-Polonia, 2 (2012), 57--62.
  • Keogh, F. R. and Merkes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
  • Miller, J. E., Convex meromrphic mapping and related functions, Proc. Amer. Math. Soc., 25 (1970), 220-228.
  • Miller, S. S. and Mocanu, P. T., Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math., vol. 255, Marcel Dekker, Inc., New York, 2000.
  • Mohd, M. H. and Darus, M., Fekete-Szego problems for quasi-subordination classes, Abstr. Appl. Anal., (2012), Art. ID 192956, 1-14.
  • Mostafa, A. O., Aouf, M. K. and Zayed, H. M., Convolution properties for some subclasses of meromorphic bounded functions of complex order, Int. J. Open Problems Complex Analysis, 8 (2016), no. 3 , 12-19.
  • Nehari, Z., Conformal Mapping, McGraw-Hill, New York, 1952.
  • Pommerenke, Ch., On meromrphic starlike functions, Pacific J. Math., 13 (1963), 221-235.
  • Robertson, M. S., Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc., 76 (1970), 1-9.
  • Silverman, H., Suchithra, K., Stephen, B. A. and Gangadharan, A., Cofficient bounds for certain classes of meromorphic functions, J. Inequal. Pure Appl. Math., (2008), 1-9.
Year 2019, , 1197 - 1205, 01.02.2019
https://doi.org/10.31801/cfsuasmas.513114

Abstract

References

  • Aouf, M. K., El-Ashwah R. M. and Zayed, H. M., Fekete--Szego inequalities for certain class of meromorphic functions, J. Egyptian Math. Soc., 21 (2013), 197--200.
  • Aouf, M. K., Mostafa, A. O. and Zayed, H. M., Convolution properties for some subclasses of meromorphic functions of complex order, Abstr. Appl. Anal., 2015 (2015), 1-6.
  • Baricz, A., Generalized Bessel Functions of the First Kind, Lecture Notes in Math., Vol. 1994, Springer-Verlag, Berlin, 2010.
  • Baricz, A., Deniz, E., Caglar, M. and Orhan, H., Differential subordinations involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc., 38 (2015), no. 3, 1255-1280.
  • Deniz, E., Differential subordination and superordination results for an operator associated with the generalized Bessel function, Preprint.
  • Goyal, S. P. and Goswami, P., Majorization for certain classes of meromorphic functions defined by integral operator, Ann. Univ. Mariae Curie Sklodowska Lublin-Polonia, 2 (2012), 57--62.
  • Keogh, F. R. and Merkes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
  • Miller, J. E., Convex meromrphic mapping and related functions, Proc. Amer. Math. Soc., 25 (1970), 220-228.
  • Miller, S. S. and Mocanu, P. T., Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math., vol. 255, Marcel Dekker, Inc., New York, 2000.
  • Mohd, M. H. and Darus, M., Fekete-Szego problems for quasi-subordination classes, Abstr. Appl. Anal., (2012), Art. ID 192956, 1-14.
  • Mostafa, A. O., Aouf, M. K. and Zayed, H. M., Convolution properties for some subclasses of meromorphic bounded functions of complex order, Int. J. Open Problems Complex Analysis, 8 (2016), no. 3 , 12-19.
  • Nehari, Z., Conformal Mapping, McGraw-Hill, New York, 1952.
  • Pommerenke, Ch., On meromrphic starlike functions, Pacific J. Math., 13 (1963), 221-235.
  • Robertson, M. S., Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc., 76 (1970), 1-9.
  • Silverman, H., Suchithra, K., Stephen, B. A. and Gangadharan, A., Cofficient bounds for certain classes of meromorphic functions, J. Inequal. Pure Appl. Math., (2008), 1-9.
There are 15 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

H. M. Zayed This is me 0000-0001-8814-8162

Serap Bulut 0000-0002-6506-4588

A. O. Mostafa This is me

Publication Date February 1, 2019
Submission Date September 12, 2017
Acceptance Date May 16, 2018
Published in Issue Year 2019

Cite

APA Zayed, H. M., Bulut, S., & Mostafa, A. O. (2019). Quasi-subordination and coefficient bounds for certain classes of meromorphic functions of complex order. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 1197-1205. https://doi.org/10.31801/cfsuasmas.513114
AMA Zayed HM, Bulut S, Mostafa AO. Quasi-subordination and coefficient bounds for certain classes of meromorphic functions of complex order. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2019;68(1):1197-1205. doi:10.31801/cfsuasmas.513114
Chicago Zayed, H. M., Serap Bulut, and A. O. Mostafa. “Quasi-Subordination and Coefficient Bounds for Certain Classes of Meromorphic Functions of Complex Order”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 1 (February 2019): 1197-1205. https://doi.org/10.31801/cfsuasmas.513114.
EndNote Zayed HM, Bulut S, Mostafa AO (February 1, 2019) Quasi-subordination and coefficient bounds for certain classes of meromorphic functions of complex order. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 1197–1205.
IEEE H. M. Zayed, S. Bulut, and A. O. Mostafa, “Quasi-subordination and coefficient bounds for certain classes of meromorphic functions of complex order”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 1, pp. 1197–1205, 2019, doi: 10.31801/cfsuasmas.513114.
ISNAD Zayed, H. M. et al. “Quasi-Subordination and Coefficient Bounds for Certain Classes of Meromorphic Functions of Complex Order”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (February 2019), 1197-1205. https://doi.org/10.31801/cfsuasmas.513114.
JAMA Zayed HM, Bulut S, Mostafa AO. Quasi-subordination and coefficient bounds for certain classes of meromorphic functions of complex order. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1197–1205.
MLA Zayed, H. M. et al. “Quasi-Subordination and Coefficient Bounds for Certain Classes of Meromorphic Functions of Complex Order”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, 2019, pp. 1197-05, doi:10.31801/cfsuasmas.513114.
Vancouver Zayed HM, Bulut S, Mostafa AO. Quasi-subordination and coefficient bounds for certain classes of meromorphic functions of complex order. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):1197-205.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.