Research Article
BibTex RIS Cite

Actions of internal groupoids in the category of Leibniz algebras

Year 2019, Volume: 68 Issue: 1, 619 - 632, 01.02.2019
https://doi.org/10.31801/cfsuasmas.453582

Abstract

The aim of this paper is to characterize the notion of internal category (groupoid) in the category of Leibniz algebras and investigate some properties of well-known notions such as covering groupoids and groupoid operations (actions) in this category. Further, for a fixed internal groupoid G in the category of Leibniz algebras, we prove that the category of covering groupoids of G and the category of internal groupoid actions of G on Leibniz algebras are equivalent. Finally, we interpret the corresponding notion of covering groupoids in the category of crossed modules of Leibniz algebras.

References

  • Aslan, A.F., A note on crossed modules of Leibniz algebras, Konuralp J. Math., 1, (2013),91-95.
  • Akız, H.F., Alemdar, N., Mucuk, O., Şahan T., Coverings of internal groupoids and crossed modules in the category of groups with operations, Georgian Math. Journal, 20(2), (2013), 223-238.
  • Brown, R., Topology and Groupoids, BookSurge LLC, North Carolina, 2006.
  • Brown, R., Higher dimensional group theory. In: Low Dimensional Topology, London Math. Soc. Lect. Notes, 48: 215-238. Cambridge Univ. Press, 1982.
  • Brown, R., Higgins, P.J., Sivera, R., Nonabelian Algebraic Topology: filtered spaces, crossed complexes, cubical homotopy groupoids, European Mathematical Society Tracts in Mathematics 15, 2011.
  • Brown, R., Danesh-Naruie, G, Hardy, JPL. Topological Groupoids: II. Covering Morphisms and G-Spaces, Math. Nachr., 74, (1976), 143-156.
  • Brown, R., Huebschmann, J. Identities among relations. In: Low Dimentional Topology, London Math. Soc. Lect. Notes, 48: 153-202. Cambridge Univ. Press, 1982.
  • Brown, R., Mucuk, O., Covering groups of non-connected topological groups revisited, Math. Proc. Camb. Phil. Soc., 115, (1994), 97-110.
  • Brown, R., Spencer C.B., G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Konn. Ned. Akad. v. Wet.. 79, (1976), 296-302.
  • Datuashvili, T., Cohomologically trivial internal categories in categories of groups with operations, Appl. Categ. Structures, 3, (1995), 221-237.
  • Datuashvili, T., Cohomology of internal categories in categories of groups with operations, Categorical Topology and its Relation to analysis, algebra and combinatorics, Ed. J. Adamek and S. Mac Lane (Prague, 1988), World Sci. Publishing, Teaneck, NJ, 1989.
  • Datuashvili, T., Kan extensions of internal functors: Nonconnected case, J.Pure Appl.Algebra, 167, (2002), 195-202.
  • Datuashvili, T., Whitehead homotopy equivalence and internal category equivalence of crossed modules in categories of groups with operations, Proc. A. Razmadze Math.Inst., 113, (1995), 3-30.
  • Higgins, P.J., Categories and groupoids, Van Nostrand, New York, 1971.
  • Huebschmann, J., Crossed n-fold extensions of groups and cohomology, Comment. Math. Helvetici, 55, (1980), 302-313.
  • Johnstone, P.T., Topos Theory, London Math. Soc. Monogr., 10, Academic Press, London, New York, 1977.
  • Loday, J-L., Cohomologie et groupes de Steinberg relatifs, J. Algebra, 54, (1978), 178-202.
  • Loday, J-L., Spaces with finitely many non-trivial homotopy groups, J. Pure Appl. Algebra, 24, (1982), 179-202.
  • Lue, A.S.T., Cohomology of groups relative to a variety, J. Algebra, 69, (1981), 155-174.
  • Mucuk, O., Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid, PhD Thesis, University of Wales, Bangor 1993.
  • Mucuk, O., Akız, H.F., Monodromy groupoids of an internal groupoid in topological groups with operations, Filomat, 29(10), (2015), 2355-2366.
  • Mucuk, O., Demir, S., Covering Groupoids of Categorical Rings, Filomat, 29(1), (2015), 39-49.
  • Mucuk, O., Kılıçarslan, B., Şahan, T., Alemdar, N., Group-groupoids and monodromy groupoids, Topology Appl., 158(15), (2011), 2034-2042.
  • Mucuk, O., Şahan, T., Coverings and crossed modules of topological groups with operations. Turk. J. Math., 38(5), (2014), 833-845.
  • Mucuk, O., Şahan, T., Covering groupoids of categorical groups, Hacettepe Journal of Math and Stat., 42(4), (2013), 419-430.
  • Mucuk, O. and Şahan, T., Group-groupoid actions and liftings of crossed modules, Georgian Math. Journal, doi:10.1515/gmj-2018-0001, (in press).
  • Mucuk, O., Şahan, T., Alemdar, N., Normality and Quotients in Crossed Modules and Group-groupoids, Appl. Categor. Struct., 23, (2015), 415-428.
  • Porter, T., Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinb. Math. Soc., 30, (1987), 373-381.
  • Porter, T., Homology of commutative algebras and an invariant of simis and vasconcelos, J.Algebra, 99(2), (1986), 458-465.
  • Whitehead, J.H.C., Note on a previous paper entitled "On adding relations to homotopy group", Ann. of Math., 47 (1946), 806-810.
  • Whitehead, J.H.C., On operators in relative homotopy groups, Ann. of Math., 49, (1948), 610-640. Whitehead, J.H.C., Combinatorial homotopy II, Bull. Amer. Math. Soc., 55, (1949), 453-496.
Year 2019, Volume: 68 Issue: 1, 619 - 632, 01.02.2019
https://doi.org/10.31801/cfsuasmas.453582

Abstract

References

  • Aslan, A.F., A note on crossed modules of Leibniz algebras, Konuralp J. Math., 1, (2013),91-95.
  • Akız, H.F., Alemdar, N., Mucuk, O., Şahan T., Coverings of internal groupoids and crossed modules in the category of groups with operations, Georgian Math. Journal, 20(2), (2013), 223-238.
  • Brown, R., Topology and Groupoids, BookSurge LLC, North Carolina, 2006.
  • Brown, R., Higher dimensional group theory. In: Low Dimensional Topology, London Math. Soc. Lect. Notes, 48: 215-238. Cambridge Univ. Press, 1982.
  • Brown, R., Higgins, P.J., Sivera, R., Nonabelian Algebraic Topology: filtered spaces, crossed complexes, cubical homotopy groupoids, European Mathematical Society Tracts in Mathematics 15, 2011.
  • Brown, R., Danesh-Naruie, G, Hardy, JPL. Topological Groupoids: II. Covering Morphisms and G-Spaces, Math. Nachr., 74, (1976), 143-156.
  • Brown, R., Huebschmann, J. Identities among relations. In: Low Dimentional Topology, London Math. Soc. Lect. Notes, 48: 153-202. Cambridge Univ. Press, 1982.
  • Brown, R., Mucuk, O., Covering groups of non-connected topological groups revisited, Math. Proc. Camb. Phil. Soc., 115, (1994), 97-110.
  • Brown, R., Spencer C.B., G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Konn. Ned. Akad. v. Wet.. 79, (1976), 296-302.
  • Datuashvili, T., Cohomologically trivial internal categories in categories of groups with operations, Appl. Categ. Structures, 3, (1995), 221-237.
  • Datuashvili, T., Cohomology of internal categories in categories of groups with operations, Categorical Topology and its Relation to analysis, algebra and combinatorics, Ed. J. Adamek and S. Mac Lane (Prague, 1988), World Sci. Publishing, Teaneck, NJ, 1989.
  • Datuashvili, T., Kan extensions of internal functors: Nonconnected case, J.Pure Appl.Algebra, 167, (2002), 195-202.
  • Datuashvili, T., Whitehead homotopy equivalence and internal category equivalence of crossed modules in categories of groups with operations, Proc. A. Razmadze Math.Inst., 113, (1995), 3-30.
  • Higgins, P.J., Categories and groupoids, Van Nostrand, New York, 1971.
  • Huebschmann, J., Crossed n-fold extensions of groups and cohomology, Comment. Math. Helvetici, 55, (1980), 302-313.
  • Johnstone, P.T., Topos Theory, London Math. Soc. Monogr., 10, Academic Press, London, New York, 1977.
  • Loday, J-L., Cohomologie et groupes de Steinberg relatifs, J. Algebra, 54, (1978), 178-202.
  • Loday, J-L., Spaces with finitely many non-trivial homotopy groups, J. Pure Appl. Algebra, 24, (1982), 179-202.
  • Lue, A.S.T., Cohomology of groups relative to a variety, J. Algebra, 69, (1981), 155-174.
  • Mucuk, O., Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid, PhD Thesis, University of Wales, Bangor 1993.
  • Mucuk, O., Akız, H.F., Monodromy groupoids of an internal groupoid in topological groups with operations, Filomat, 29(10), (2015), 2355-2366.
  • Mucuk, O., Demir, S., Covering Groupoids of Categorical Rings, Filomat, 29(1), (2015), 39-49.
  • Mucuk, O., Kılıçarslan, B., Şahan, T., Alemdar, N., Group-groupoids and monodromy groupoids, Topology Appl., 158(15), (2011), 2034-2042.
  • Mucuk, O., Şahan, T., Coverings and crossed modules of topological groups with operations. Turk. J. Math., 38(5), (2014), 833-845.
  • Mucuk, O., Şahan, T., Covering groupoids of categorical groups, Hacettepe Journal of Math and Stat., 42(4), (2013), 419-430.
  • Mucuk, O. and Şahan, T., Group-groupoid actions and liftings of crossed modules, Georgian Math. Journal, doi:10.1515/gmj-2018-0001, (in press).
  • Mucuk, O., Şahan, T., Alemdar, N., Normality and Quotients in Crossed Modules and Group-groupoids, Appl. Categor. Struct., 23, (2015), 415-428.
  • Porter, T., Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinb. Math. Soc., 30, (1987), 373-381.
  • Porter, T., Homology of commutative algebras and an invariant of simis and vasconcelos, J.Algebra, 99(2), (1986), 458-465.
  • Whitehead, J.H.C., Note on a previous paper entitled "On adding relations to homotopy group", Ann. of Math., 47 (1946), 806-810.
  • Whitehead, J.H.C., On operators in relative homotopy groups, Ann. of Math., 49, (1948), 610-640. Whitehead, J.H.C., Combinatorial homotopy II, Bull. Amer. Math. Soc., 55, (1949), 453-496.
There are 31 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

Tunçar Şahan 0000-0002-6552-4695

Ayhan Erciyes 0000-0002-0942-5182

Publication Date February 1, 2019
Submission Date December 20, 2017
Acceptance Date March 31, 2018
Published in Issue Year 2019 Volume: 68 Issue: 1

Cite

APA Şahan, T., & Erciyes, A. (2019). Actions of internal groupoids in the category of Leibniz algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 619-632. https://doi.org/10.31801/cfsuasmas.453582
AMA Şahan T, Erciyes A. Actions of internal groupoids in the category of Leibniz algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2019;68(1):619-632. doi:10.31801/cfsuasmas.453582
Chicago Şahan, Tunçar, and Ayhan Erciyes. “Actions of Internal Groupoids in the Category of Leibniz Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 1 (February 2019): 619-32. https://doi.org/10.31801/cfsuasmas.453582.
EndNote Şahan T, Erciyes A (February 1, 2019) Actions of internal groupoids in the category of Leibniz algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 619–632.
IEEE T. Şahan and A. Erciyes, “Actions of internal groupoids in the category of Leibniz algebras”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 1, pp. 619–632, 2019, doi: 10.31801/cfsuasmas.453582.
ISNAD Şahan, Tunçar - Erciyes, Ayhan. “Actions of Internal Groupoids in the Category of Leibniz Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (February 2019), 619-632. https://doi.org/10.31801/cfsuasmas.453582.
JAMA Şahan T, Erciyes A. Actions of internal groupoids in the category of Leibniz algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:619–632.
MLA Şahan, Tunçar and Ayhan Erciyes. “Actions of Internal Groupoids in the Category of Leibniz Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, 2019, pp. 619-32, doi:10.31801/cfsuasmas.453582.
Vancouver Şahan T, Erciyes A. Actions of internal groupoids in the category of Leibniz algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):619-32.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.