Research Article
BibTex RIS Cite

On the spectrum and Hilbert Schimidt properties of generalized Rhaly matrices

Year 2019, Volume: 68 Issue: 1, 712 - 723, 01.02.2019
https://doi.org/10.31801/cfsuasmas.464177

Abstract

In this paper, we show that the multiplications of some generalized Rhaly operators are Hilbert Schimidt operators.We also calculate the spectrum and essential spectrum of a special generalized Rhaly matrices on the Hardy space H².

References

  • Akhmedov, A. M. and Başar, F., The fine spectra of the Cesaro operator C₁ over the sequence space bv_{p}, Math. J. Okayama Univ., 50 (2007), 135-147.
  • Aleman, A. and Siskakis, A. G., An integral Operator on H^{p}, Complex Variables, 28 (1995), 149-158.
  • Brown, A., Halmos, P. R. and Shields, A. L., Cesàro Operators, Acta Sci. Math., 26 (1965), 125-134.
  • Cima, J. A. and Petersen, K .E., Some Analytic Functions Whose Boundary Values Have Bounded Mean Oscillation, Math. Z., 147 (1976), 237-247.
  • Conway, J. B., A Course in Operator Theory, AMS, 2000.
  • Durna, N. and Yildirim, M., Topological resuls about the set of generalized Rhally matrices, Gen. Math. Notes, 17(1) (2013), 1-7.
  • Durna, N. and Yildirim, M., Generalized terraced matrices, Miskolc Math. Notes, 17(1) (2016), 201-208.
  • Garnett, J. B., Bounded analytic functions, vol. 96 of Pure and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981.
  • Gonzalez, M., The fine spectrum of the Cesàro operator in ℓ_{p} (1<p<∞), Arch. Math., 44 (1985), 355-358.
  • Hardy, G. H., Littlewood, J. E. and Polya, G., Inequalities, Cambridge, 1934.
  • Okutoyi, I. J., On the spectrum of C₁ as an operator on bv₀, J. Austral. Math. Soc. Series A, 48 (1990), 79-86.
  • Pommerenke, C., Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation, Comment. Math. Helv., 52 (1977), 591-602.
  • Rhaly, Jr. H. C., Terraced matrices, Bull. London Math. Soc., 21 (1989), 399-406.
  • Rhoades, B. E. and Yildirim, M., The spectra of factorable matrices on ℓ_{p}, Integr. Equ. Oper. Theory, 55 (2006), 111-126.
  • Siskakis, A. G., Composition Semigroups and the Cesàro Operator on H^{p}, J. London Math. Soc., 36 (1987), 153-164.
  • Valeriyevna, G. O., Strength Properties of Safara Essential Spectrum, Dissertation, Belarusian State University at Minsk, 2010.
  • Yildirim, M., On the Spectrum of the Rhaly Operators on ℓ_{p}, Indian J. Pure Appl. Math., 32(2) (2001), 191-198.
  • Young, S. W., Algebraic and Spectral Properties of Generalized Cesàro Operators, Dissertation, University of North Carolina at Chapel Hill, 2002.
  • Young, S. W., Spectral Properties of Generalized Cesàro Operators, Integr. Equ. Oper. Theory, 50 (2004), 129-146.
  • Young, S. W., Generalized Cesàro Operators and the Bergman Spaces, J. Oper. Theory, 52 (2004), 341-351.
Year 2019, Volume: 68 Issue: 1, 712 - 723, 01.02.2019
https://doi.org/10.31801/cfsuasmas.464177

Abstract

References

  • Akhmedov, A. M. and Başar, F., The fine spectra of the Cesaro operator C₁ over the sequence space bv_{p}, Math. J. Okayama Univ., 50 (2007), 135-147.
  • Aleman, A. and Siskakis, A. G., An integral Operator on H^{p}, Complex Variables, 28 (1995), 149-158.
  • Brown, A., Halmos, P. R. and Shields, A. L., Cesàro Operators, Acta Sci. Math., 26 (1965), 125-134.
  • Cima, J. A. and Petersen, K .E., Some Analytic Functions Whose Boundary Values Have Bounded Mean Oscillation, Math. Z., 147 (1976), 237-247.
  • Conway, J. B., A Course in Operator Theory, AMS, 2000.
  • Durna, N. and Yildirim, M., Topological resuls about the set of generalized Rhally matrices, Gen. Math. Notes, 17(1) (2013), 1-7.
  • Durna, N. and Yildirim, M., Generalized terraced matrices, Miskolc Math. Notes, 17(1) (2016), 201-208.
  • Garnett, J. B., Bounded analytic functions, vol. 96 of Pure and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981.
  • Gonzalez, M., The fine spectrum of the Cesàro operator in ℓ_{p} (1<p<∞), Arch. Math., 44 (1985), 355-358.
  • Hardy, G. H., Littlewood, J. E. and Polya, G., Inequalities, Cambridge, 1934.
  • Okutoyi, I. J., On the spectrum of C₁ as an operator on bv₀, J. Austral. Math. Soc. Series A, 48 (1990), 79-86.
  • Pommerenke, C., Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation, Comment. Math. Helv., 52 (1977), 591-602.
  • Rhaly, Jr. H. C., Terraced matrices, Bull. London Math. Soc., 21 (1989), 399-406.
  • Rhoades, B. E. and Yildirim, M., The spectra of factorable matrices on ℓ_{p}, Integr. Equ. Oper. Theory, 55 (2006), 111-126.
  • Siskakis, A. G., Composition Semigroups and the Cesàro Operator on H^{p}, J. London Math. Soc., 36 (1987), 153-164.
  • Valeriyevna, G. O., Strength Properties of Safara Essential Spectrum, Dissertation, Belarusian State University at Minsk, 2010.
  • Yildirim, M., On the Spectrum of the Rhaly Operators on ℓ_{p}, Indian J. Pure Appl. Math., 32(2) (2001), 191-198.
  • Young, S. W., Algebraic and Spectral Properties of Generalized Cesàro Operators, Dissertation, University of North Carolina at Chapel Hill, 2002.
  • Young, S. W., Spectral Properties of Generalized Cesàro Operators, Integr. Equ. Oper. Theory, 50 (2004), 129-146.
  • Young, S. W., Generalized Cesàro Operators and the Bergman Spaces, J. Oper. Theory, 52 (2004), 341-351.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Mohammad Mursaleen 0000-0003-4128-0427

Mustafa Yildirim 0000-0002-8880-5457

Nuh Durna 0000-0001-5469-7745

Publication Date February 1, 2019
Submission Date February 9, 2018
Acceptance Date April 11, 2018
Published in Issue Year 2019 Volume: 68 Issue: 1

Cite

APA Mursaleen, M., Yildirim, M., & Durna, N. (2019). On the spectrum and Hilbert Schimidt properties of generalized Rhaly matrices. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(1), 712-723. https://doi.org/10.31801/cfsuasmas.464177
AMA Mursaleen M, Yildirim M, Durna N. On the spectrum and Hilbert Schimidt properties of generalized Rhaly matrices. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. February 2019;68(1):712-723. doi:10.31801/cfsuasmas.464177
Chicago Mursaleen, Mohammad, Mustafa Yildirim, and Nuh Durna. “On the Spectrum and Hilbert Schimidt Properties of Generalized Rhaly Matrices”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 1 (February 2019): 712-23. https://doi.org/10.31801/cfsuasmas.464177.
EndNote Mursaleen M, Yildirim M, Durna N (February 1, 2019) On the spectrum and Hilbert Schimidt properties of generalized Rhaly matrices. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 1 712–723.
IEEE M. Mursaleen, M. Yildirim, and N. Durna, “On the spectrum and Hilbert Schimidt properties of generalized Rhaly matrices”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 1, pp. 712–723, 2019, doi: 10.31801/cfsuasmas.464177.
ISNAD Mursaleen, Mohammad et al. “On the Spectrum and Hilbert Schimidt Properties of Generalized Rhaly Matrices”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/1 (February 2019), 712-723. https://doi.org/10.31801/cfsuasmas.464177.
JAMA Mursaleen M, Yildirim M, Durna N. On the spectrum and Hilbert Schimidt properties of generalized Rhaly matrices. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:712–723.
MLA Mursaleen, Mohammad et al. “On the Spectrum and Hilbert Schimidt Properties of Generalized Rhaly Matrices”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 1, 2019, pp. 712-23, doi:10.31801/cfsuasmas.464177.
Vancouver Mursaleen M, Yildirim M, Durna N. On the spectrum and Hilbert Schimidt properties of generalized Rhaly matrices. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(1):712-23.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.