Research Article
BibTex RIS Cite

Baues cofibration for quadratic modules of Lie algebras

Year 2019, Volume: 68 Issue: 2, 1653 - 1663, 01.08.2019
https://doi.org/10.31801/cfsuasmas.468743

Abstract

In this paper; free quadratic modules and totally free ojects in the category of quadratic modules consructed over Lie algebras. We use the free quadratic modules of Lie algebras to show that the category quadratic module of lie algebras is a cofibration category by means of Baues.

References

  • André, M., Homologie des algébras commutatives, Springer-Verlag, Die Grundlehren der mathematicschen Wissenschaften in Einzeldarstellungen Band, 206, 1974.
  • Akça, I. and Arvasi, Z., Simplicial and crossed Lie algebras, Homology, Homotopy and Applications, Vol. 4 No.1, (2002) ,43-57.
  • Arvasi, Z., 2-crossed complexes and crossed resolutions of Lie algebras, Algebra, Groups and Geometry, Vol. 16,(1999), 452-479.
  • Baues, H.J., Combinatorial homotopy and 4-dimenional complexes, Walter de Gruyter, 15, 1991.
  • Carrasco, P. and A.M. Cegarra, Group-theoretic algebraic models for homotopy types, Journal of Pure and Applied Algebra, 75, (1991), 195-235.
  • Conduché, D., Modules croisés g énéralisés de longueur 2, J. Pure and Applied Algebra , 34, (1984), 155-178.
  • Curtis, E.B., Simplicial homotopy theory, Adv. in Math., 6, (1971), 107-209.
  • Ellis, G.J., Homotopical aspects of Lie algebras, J. Austral. Math. Soc. (Series A), 54, (1993), 393-419.
  • Kan, D.M., A combinatorial definition of homotopy groups, Annals of Maths. 61, (1958), 288-312.
  • Kassel, C. and Loday, J.L., Extensions centrales d'algébres de Lie, Ann. Inst. Fourier (Grenoble), 33, (1982), 119-142.
  • Ulualan, E. and Ö. Uslu, E., Quadratic modules for Lie algebras, Hacettepe Journal of Mathematics and Statistics, Vol.40, (3), (2010), 409-419.
  • Whitehead, J.H.C. , Combinatorial Homotopy II, Bull. Amer. Math. Soc., 55, (1949), 453-496.
Year 2019, Volume: 68 Issue: 2, 1653 - 1663, 01.08.2019
https://doi.org/10.31801/cfsuasmas.468743

Abstract

References

  • André, M., Homologie des algébras commutatives, Springer-Verlag, Die Grundlehren der mathematicschen Wissenschaften in Einzeldarstellungen Band, 206, 1974.
  • Akça, I. and Arvasi, Z., Simplicial and crossed Lie algebras, Homology, Homotopy and Applications, Vol. 4 No.1, (2002) ,43-57.
  • Arvasi, Z., 2-crossed complexes and crossed resolutions of Lie algebras, Algebra, Groups and Geometry, Vol. 16,(1999), 452-479.
  • Baues, H.J., Combinatorial homotopy and 4-dimenional complexes, Walter de Gruyter, 15, 1991.
  • Carrasco, P. and A.M. Cegarra, Group-theoretic algebraic models for homotopy types, Journal of Pure and Applied Algebra, 75, (1991), 195-235.
  • Conduché, D., Modules croisés g énéralisés de longueur 2, J. Pure and Applied Algebra , 34, (1984), 155-178.
  • Curtis, E.B., Simplicial homotopy theory, Adv. in Math., 6, (1971), 107-209.
  • Ellis, G.J., Homotopical aspects of Lie algebras, J. Austral. Math. Soc. (Series A), 54, (1993), 393-419.
  • Kan, D.M., A combinatorial definition of homotopy groups, Annals of Maths. 61, (1958), 288-312.
  • Kassel, C. and Loday, J.L., Extensions centrales d'algébres de Lie, Ann. Inst. Fourier (Grenoble), 33, (1982), 119-142.
  • Ulualan, E. and Ö. Uslu, E., Quadratic modules for Lie algebras, Hacettepe Journal of Mathematics and Statistics, Vol.40, (3), (2010), 409-419.
  • Whitehead, J.H.C. , Combinatorial Homotopy II, Bull. Amer. Math. Soc., 55, (1949), 453-496.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Koray Yılmaz 0000-0002-8641-0603

Elis Soylu Yılmaz 0000-0002-0869-310X

Publication Date August 1, 2019
Submission Date October 9, 2018
Acceptance Date December 21, 2018
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Yılmaz, K., & Soylu Yılmaz, E. (2019). Baues cofibration for quadratic modules of Lie algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1653-1663. https://doi.org/10.31801/cfsuasmas.468743
AMA Yılmaz K, Soylu Yılmaz E. Baues cofibration for quadratic modules of Lie algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1653-1663. doi:10.31801/cfsuasmas.468743
Chicago Yılmaz, Koray, and Elis Soylu Yılmaz. “Baues Cofibration for Quadratic Modules of Lie Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1653-63. https://doi.org/10.31801/cfsuasmas.468743.
EndNote Yılmaz K, Soylu Yılmaz E (August 1, 2019) Baues cofibration for quadratic modules of Lie algebras. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1653–1663.
IEEE K. Yılmaz and E. Soylu Yılmaz, “Baues cofibration for quadratic modules of Lie algebras”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1653–1663, 2019, doi: 10.31801/cfsuasmas.468743.
ISNAD Yılmaz, Koray - Soylu Yılmaz, Elis. “Baues Cofibration for Quadratic Modules of Lie Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1653-1663. https://doi.org/10.31801/cfsuasmas.468743.
JAMA Yılmaz K, Soylu Yılmaz E. Baues cofibration for quadratic modules of Lie algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1653–1663.
MLA Yılmaz, Koray and Elis Soylu Yılmaz. “Baues Cofibration for Quadratic Modules of Lie Algebras”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1653-6, doi:10.31801/cfsuasmas.468743.
Vancouver Yılmaz K, Soylu Yılmaz E. Baues cofibration for quadratic modules of Lie algebras. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1653-6.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.