Research Article
BibTex RIS Cite
Year 2019, Volume: 68 Issue: 2, 1452 - 1461, 01.08.2019
https://doi.org/10.31801/cfsuasmas.539358

Abstract

References

  • Çanak, İ. and Totur, Ü., The (C,α) integrability of functions by weighted mean method, Filomat. 26(6) (2012), 1209-1214.
  • Çanak, İ., Totur, Ü. and Sezer, S. A., Cesàro integrability and Tauberian theorems in quantum calculus, An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 64(1) (2018), 9-19.
  • Çanak, İ. and Totur, Ü., On the Cesàro summability for function of two variables, Miskolc Math. Notes., 19(2) (2018), 1203-1215.
  • Fındık, G. and Çanak, İ., Some Tauberian theorems for weighted means of double integrals, Paper presented at the 2nd International Conference of Mathematical Sciences (ICMS 2018), 31 July 2018-06 August 2018, Maltepe University, İstanbul, Turkey.
  • Fitouhi, A. and Brahim, K., Tauberian theorems in quantum calculus, J. Nonlinear Math. Phys. 14 (2007), 324-330.
  • Laforgia, A., A theory of divergent integrals, Appl. Math. Lett. 22 (2009), 834-840.
  • Móricz, F., Tauberian theorems for Cesàro summable double integrals over R²₊, Stud. Math. 138(1) (2000), 41-52.
  • Özsaraç, F. and Çanak, İ., Tauberian theorems for iterations of weighted mean summable integrals, Positivity (forthcoming). doi.org/10.1007/s11117-018-0603-4.
  • Totur, Ü., Okur, M. A. and Çanak, İ. One-sided conditions for the (N, p) summability of integrals, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80(3) (2018), 65-74.
  • Totur, Ü. and Çanak, İ., General Tauberian theorems for Cesàro integrability of functions, Georgian Math. (forthcoming). doi.org/10.1515/gmj-2019-2005.
  • Totur, Ü., Çanak, İ. and Sezer, S. A., Weighted integrability and its applications in quantum calculus, Proc. Nat. Acad. Sci. India Sect. A. doi.org/10.1007/s40010-018-0537-z.

Some Tauberian theorems for weighted means of double integrals

Year 2019, Volume: 68 Issue: 2, 1452 - 1461, 01.08.2019
https://doi.org/10.31801/cfsuasmas.539358

Abstract

Let p(x) and q(y) be nondecreasing continuous functions on [0,∞) such that p(0)=q(0)=0 and p(x),q(y)→∞ as x,y→∞. For a locally integrable function f(x,y) on R₊²=[0,∞)×[0,∞), we denote its double integral by F(x,y)=∫₀^{x}∫₀^{y}f(t,s)dtds and its weighted mean of type (α,β) by

t_{α,β}(x,y)=∫₀^{x}∫₀^{y}(1-((p(t))/(p(x))))^{α}(1-((q(s))/(q(y))))^{β}f(t,s)dtds

where α>-1 and β>-1. We say that ∫₀^{∞}∫₀^{∞}f(t,s)dtds is integrable to L by the weighted mean method of type (α,β) determined by the functions p(x) and q(x) if lim_{x,y→∞}t_{α,β}(x,y)=L exists. We prove that if lim_{x,y→∞}t_{α,β}(x,y)=L exists and t_{α,β}(x,y) is bounded on R₊² for some α>-1 and β>-1, then lim_{x,y→∞}t_{α+h,β+k}(x,y)=L exists for all h>0 and k>0. Finally, we prove that if ∫₀^{∞}∫₀^{∞}f(t,s)dtds is integrable to L by the weighted mean method of type (1,1) determined by the functions p(x) and q(x) and conditions [displaystyle]<LaTeX>\displaystyle</LaTeX>((p(x))/(p′(x)))∫₀^{y}f(x,s)ds=O(1) and [displaystyle]<LaTeX>\displaystyle</LaTeX>((q(y))/(q′(y)))∫₀^{x}f(t,y)dt=O(1) hold, then lim_{x,y→∞}F(x,y)=L exists.

References

  • Çanak, İ. and Totur, Ü., The (C,α) integrability of functions by weighted mean method, Filomat. 26(6) (2012), 1209-1214.
  • Çanak, İ., Totur, Ü. and Sezer, S. A., Cesàro integrability and Tauberian theorems in quantum calculus, An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 64(1) (2018), 9-19.
  • Çanak, İ. and Totur, Ü., On the Cesàro summability for function of two variables, Miskolc Math. Notes., 19(2) (2018), 1203-1215.
  • Fındık, G. and Çanak, İ., Some Tauberian theorems for weighted means of double integrals, Paper presented at the 2nd International Conference of Mathematical Sciences (ICMS 2018), 31 July 2018-06 August 2018, Maltepe University, İstanbul, Turkey.
  • Fitouhi, A. and Brahim, K., Tauberian theorems in quantum calculus, J. Nonlinear Math. Phys. 14 (2007), 324-330.
  • Laforgia, A., A theory of divergent integrals, Appl. Math. Lett. 22 (2009), 834-840.
  • Móricz, F., Tauberian theorems for Cesàro summable double integrals over R²₊, Stud. Math. 138(1) (2000), 41-52.
  • Özsaraç, F. and Çanak, İ., Tauberian theorems for iterations of weighted mean summable integrals, Positivity (forthcoming). doi.org/10.1007/s11117-018-0603-4.
  • Totur, Ü., Okur, M. A. and Çanak, İ. One-sided conditions for the (N, p) summability of integrals, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80(3) (2018), 65-74.
  • Totur, Ü. and Çanak, İ., General Tauberian theorems for Cesàro integrability of functions, Georgian Math. (forthcoming). doi.org/10.1515/gmj-2019-2005.
  • Totur, Ü., Çanak, İ. and Sezer, S. A., Weighted integrability and its applications in quantum calculus, Proc. Nat. Acad. Sci. India Sect. A. doi.org/10.1007/s40010-018-0537-z.
There are 11 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

Gökşen Fındık This is me 0000-0002-2356-3987

İbrahim Çanak 0000-0002-1754-1685

Publication Date August 1, 2019
Submission Date July 31, 2018
Acceptance Date January 15, 2018
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Fındık, G., & Çanak, İ. (2019). Some Tauberian theorems for weighted means of double integrals. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1452-1461. https://doi.org/10.31801/cfsuasmas.539358
AMA Fındık G, Çanak İ. Some Tauberian theorems for weighted means of double integrals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1452-1461. doi:10.31801/cfsuasmas.539358
Chicago Fındık, Gökşen, and İbrahim Çanak. “Some Tauberian Theorems for Weighted Means of Double Integrals”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1452-61. https://doi.org/10.31801/cfsuasmas.539358.
EndNote Fındık G, Çanak İ (August 1, 2019) Some Tauberian theorems for weighted means of double integrals. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1452–1461.
IEEE G. Fındık and İ. Çanak, “Some Tauberian theorems for weighted means of double integrals”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1452–1461, 2019, doi: 10.31801/cfsuasmas.539358.
ISNAD Fındık, Gökşen - Çanak, İbrahim. “Some Tauberian Theorems for Weighted Means of Double Integrals”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1452-1461. https://doi.org/10.31801/cfsuasmas.539358.
JAMA Fındık G, Çanak İ. Some Tauberian theorems for weighted means of double integrals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1452–1461.
MLA Fındık, Gökşen and İbrahim Çanak. “Some Tauberian Theorems for Weighted Means of Double Integrals”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1452-61, doi:10.31801/cfsuasmas.539358.
Vancouver Fındık G, Çanak İ. Some Tauberian theorems for weighted means of double integrals. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1452-61.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.