Research Article
BibTex RIS Cite

Sonlu Blaschke Çarpımları ve Altın Oran

Year 2021, Volume: 70 Issue: 2, 664 - 677, 31.12.2021
https://doi.org/10.31801/cfsuasmas.820518

Abstract

References

  • Coxeter H. S. M., Introduction to Geometry, Second edition. John Wiley & Sons, Inc., New York-London-Sydney, 1969.
  • Crasmareanu, M., Hre¸tcanu, C-E., Golden differential geometry, Chaos Solitons Fractals 38 (2008), 1229-1238. DOI: 10.1016/j.chaos.2008.04.007
  • Crasmareanu, M., Hre¸tcanu, C-E., Munteanu, M-I., Golden- and product-shaped hypersurfaces in real space forms, Int. J. Geom. Methods Mod. Phys. 10 (2013), 1320006, 9 pp. DOI:10.1142/S0219887813200065
  • Daepp, U., Gorkin, P., Mortini, R., Ellipses and Finite Blaschke products, Amer. Math. Monthly 109(9) (2002), 785-795. DOI: 10.1080/00029890.2002.11919914
  • Daepp, U., Gorkin, P., Voss, K., Poncelet's theorem, Sendov's conjecture, and Blaschke products, J. Math. Anal. Appl. 365(1) (2010), 93-102. DOI: 10.1016/j.jmaa.2009.09.058
  • Frantz, M., How conics govern Möbius transformations, Amer. Math. Monthly 111(9) (2004), 779-790. DOI: 10.1080/00029890.2004.11920141
  • Fujimura, M., Inscribed ellipses and Blaschke products, Comput. Methods Funct. Theory 13(4) (2013), 557-573. DOI 10.1007/s40315-013-0037-8
  • Gau, H. W., Wu, P. Y., Numerical range and Poncelet property, Taiwanese J. Math. 7(2) (2003), 173-193. DOI: 10.11650/twjm/1500575056
  • Gorkin P., Skubak, E., Polynomials, ellipses, and matrices: two questions, one answer, Amer. Math. Monthly 118(6) (2011), 522-533. DOI:10.4169/amer.math.monthly.118.06.522
  • Hopkins, A. B., Stillinger, H. F., Torquato, S., Spherical codes, maximal local packing density, and the golden ratio, J. Math. Phys. 51(4) (2010), 043302, 6 pp. DOI:10.1063/1.3372627
  • Hretcanu, C-E., Crasmareanu, M., Applications of the golden ratio on Riemannian manifolds, Turkish J. Math. 33(2) (2009), 179-191. DOI: 10.3906/mat-0711-29
  • Koshy, T., Fibonacci and Lucas numbers with applications, Pure and Applied Mathematics (New York). Wiley-Interscience, New York, 2001.
  • Özgür, C., Özgür, N. Y., Classification of metallic shaped hypersurfaces in real space forms, Turkish J. Math., 39(5) (2015), 784-794. DOI: 10.3906/mat-1408-17
  • Özgür, C., Özgür, N. Y., Metallic shaped hypersurfaces in Lorentzian space forms, Rev. Un. Mat. Argentina 58(2) (2017), 215-226.
  • Özgür, N. Y., Uçar, S., On some geometric properties of finite Blaschke products, Int. Electron. J. Geom., 8(2) (2015), 97-105.
  • Özgür, N. Y., Finite Blaschke products and circles that pass through the origin, Bull. Math. Anal. Appl. 3(3) (2011), 64-72.
  • Özgür, N. Y., Some geometric properties of finite Blaschke products, Proceedings of the Conference RIGA 2011, (2011), 239-246.
  • Uçar, S., Finite Blaschke Products and Some Geometric Properties, Ph.D. Thesis, Balıkesir University, 2015.
  • Tutte, W. T., On chromatic polynomials and the golden ratio, J. Emphasized Theory, 9 (1970), 289-296.

Finite Blaschke products and the golden ratio

Year 2021, Volume: 70 Issue: 2, 664 - 677, 31.12.2021
https://doi.org/10.31801/cfsuasmas.820518

Abstract

Geometric properties of finite Blaschke products have been intensively studied by many different aspects. In this paper, our aim is to study geometric properties of finite Blaschke products related to the golden ratio $\alpha =\frac{1+\sqrt{5}}{2}$. Mainly, we focus on the relationships between the zeros of canonical finite Blaschke products of lower degree and the golden ratio. We show that the geometric notions such as "golden triangle, "golden ellipse" and "golden rectangle" are closely related to the geometry of finite Blaschke products.

References

  • Coxeter H. S. M., Introduction to Geometry, Second edition. John Wiley & Sons, Inc., New York-London-Sydney, 1969.
  • Crasmareanu, M., Hre¸tcanu, C-E., Golden differential geometry, Chaos Solitons Fractals 38 (2008), 1229-1238. DOI: 10.1016/j.chaos.2008.04.007
  • Crasmareanu, M., Hre¸tcanu, C-E., Munteanu, M-I., Golden- and product-shaped hypersurfaces in real space forms, Int. J. Geom. Methods Mod. Phys. 10 (2013), 1320006, 9 pp. DOI:10.1142/S0219887813200065
  • Daepp, U., Gorkin, P., Mortini, R., Ellipses and Finite Blaschke products, Amer. Math. Monthly 109(9) (2002), 785-795. DOI: 10.1080/00029890.2002.11919914
  • Daepp, U., Gorkin, P., Voss, K., Poncelet's theorem, Sendov's conjecture, and Blaschke products, J. Math. Anal. Appl. 365(1) (2010), 93-102. DOI: 10.1016/j.jmaa.2009.09.058
  • Frantz, M., How conics govern Möbius transformations, Amer. Math. Monthly 111(9) (2004), 779-790. DOI: 10.1080/00029890.2004.11920141
  • Fujimura, M., Inscribed ellipses and Blaschke products, Comput. Methods Funct. Theory 13(4) (2013), 557-573. DOI 10.1007/s40315-013-0037-8
  • Gau, H. W., Wu, P. Y., Numerical range and Poncelet property, Taiwanese J. Math. 7(2) (2003), 173-193. DOI: 10.11650/twjm/1500575056
  • Gorkin P., Skubak, E., Polynomials, ellipses, and matrices: two questions, one answer, Amer. Math. Monthly 118(6) (2011), 522-533. DOI:10.4169/amer.math.monthly.118.06.522
  • Hopkins, A. B., Stillinger, H. F., Torquato, S., Spherical codes, maximal local packing density, and the golden ratio, J. Math. Phys. 51(4) (2010), 043302, 6 pp. DOI:10.1063/1.3372627
  • Hretcanu, C-E., Crasmareanu, M., Applications of the golden ratio on Riemannian manifolds, Turkish J. Math. 33(2) (2009), 179-191. DOI: 10.3906/mat-0711-29
  • Koshy, T., Fibonacci and Lucas numbers with applications, Pure and Applied Mathematics (New York). Wiley-Interscience, New York, 2001.
  • Özgür, C., Özgür, N. Y., Classification of metallic shaped hypersurfaces in real space forms, Turkish J. Math., 39(5) (2015), 784-794. DOI: 10.3906/mat-1408-17
  • Özgür, C., Özgür, N. Y., Metallic shaped hypersurfaces in Lorentzian space forms, Rev. Un. Mat. Argentina 58(2) (2017), 215-226.
  • Özgür, N. Y., Uçar, S., On some geometric properties of finite Blaschke products, Int. Electron. J. Geom., 8(2) (2015), 97-105.
  • Özgür, N. Y., Finite Blaschke products and circles that pass through the origin, Bull. Math. Anal. Appl. 3(3) (2011), 64-72.
  • Özgür, N. Y., Some geometric properties of finite Blaschke products, Proceedings of the Conference RIGA 2011, (2011), 239-246.
  • Uçar, S., Finite Blaschke Products and Some Geometric Properties, Ph.D. Thesis, Balıkesir University, 2015.
  • Tutte, W. T., On chromatic polynomials and the golden ratio, J. Emphasized Theory, 9 (1970), 289-296.
There are 19 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Nihal Özgür 0000-0002-8152-1830

Sumeyra Ucar 0000-0002-6628-526X

Publication Date December 31, 2021
Submission Date November 3, 2020
Acceptance Date February 20, 2021
Published in Issue Year 2021 Volume: 70 Issue: 2

Cite

APA Özgür, N., & Ucar, S. (2021). Finite Blaschke products and the golden ratio. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70(2), 664-677. https://doi.org/10.31801/cfsuasmas.820518
AMA Özgür N, Ucar S. Finite Blaschke products and the golden ratio. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. December 2021;70(2):664-677. doi:10.31801/cfsuasmas.820518
Chicago Özgür, Nihal, and Sumeyra Ucar. “Finite Blaschke Products and the Golden Ratio”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70, no. 2 (December 2021): 664-77. https://doi.org/10.31801/cfsuasmas.820518.
EndNote Özgür N, Ucar S (December 1, 2021) Finite Blaschke products and the golden ratio. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70 2 664–677.
IEEE N. Özgür and S. Ucar, “Finite Blaschke products and the golden ratio”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 70, no. 2, pp. 664–677, 2021, doi: 10.31801/cfsuasmas.820518.
ISNAD Özgür, Nihal - Ucar, Sumeyra. “Finite Blaschke Products and the Golden Ratio”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 70/2 (December 2021), 664-677. https://doi.org/10.31801/cfsuasmas.820518.
JAMA Özgür N, Ucar S. Finite Blaschke products and the golden ratio. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70:664–677.
MLA Özgür, Nihal and Sumeyra Ucar. “Finite Blaschke Products and the Golden Ratio”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 70, no. 2, 2021, pp. 664-77, doi:10.31801/cfsuasmas.820518.
Vancouver Özgür N, Ucar S. Finite Blaschke products and the golden ratio. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021;70(2):664-77.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.