Year 2022,
Volume: 71 Issue: 1, 285 - 304, 30.03.2022
Bahar Abalı
Ahmet Yücesan
References
- Abalı, B, Associated curves of Frenet curves in the dual Lorentzian space, MSc Thesis, Suleyman Demirel University, Isparta, 2019.
- Akutagawa, K., Nishikawa, S., The Gauss map and spacelike surfaces with prescribed mean curvature in Minkowski 3-Space, Tohoku Math. J., 42(1) (1990), 67-82.
https://doi.org/10.2748/tmj/1178227694
- Ali, A. T., Lopez, R., Slant helices in Minkowski space $E_{1}^{3}$, J. Korean Math. Soc., 48(1) (2011), 159-167. https://doi.org/10.4134/JKMS.2011.48.1.159
- Ayyıldız, N., Çöken, A. C., Yücesan, A., A Characterization of dual Lorentzian spherical curves in the dual Lorentzian space, Taiwanese J. Math., 11(4) (2007), 999-1018.
https://doi.org/10.11650/twjm/1500404798
- Barros, M., Ferrandez, A., Lucas, P., Merono, M. A., General helices in the three dimensional Lorentzian space forms, Rocky Mountain J. Math., 31(2) (2001), 373-388.
- Chen, B. Y., When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly, 110(2) (2003), 147-152. https://doi.org/10.1080/00029890.2003.11919949
- Choi, J. H., Kim, Y. H., Associated curves of a Frenet curve and their applications, Appl. Math. Comput., 218(18) (2012), 9116-9124. https://doi.org/10.1016/j.amc.2012.02.064
- Choi, J. H., Kim, Y. H., Ali, A. T., Some associated curves of Frenet non-lightlike curves in $E_{1}^{3}$, J. Math. Anal. Appl., 394(2) (2012), 712-723. https://doi.org/10.1016/j.jmaa.2012.04.063
- Guggenheimer, H. W., Differential Geometry, McGraw-Hill, New York, 1963.
- İlarslan, K., Nesovic, E., Petrovic, M., Some characterizations of rectifying curves in the Minkowski 3-Space, Novi Sad J. Math., 33(2) (2003), 23-32.
- Lee J. W., Choi, J. H., Jin, D. H., The explicit determination of dual plane curves and dual helices in terms of its dual curvature and dual torsion, Demonstr. Math., 47(1) (2014), 156-169. https://doi.org/10.2478/dema-2014-0013
- Lopez, R., Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7(1) (2014), 44-107.
- O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, 1983.
- Ozbey, E., Oral, M., A study on rectifying curves in the dual Lorentzian space, Bull. Korean Math. Soc., 46(5) (2009), 967-978. https://doi.org/10.4134/BKMS.2009.46.5.967
- Sağlam, D., Ozkan, S., Ozdamar, D., Slant helices in dual Lorentzian space $D_{1}^{3}$, Natural Science and Discovery, 2(1) (2016) ,3-10.
- Uğurlu, H. H., Çalışkan, A., The study mapping for directed space-like and timelike lines in Minkowski 3-Space $R_{1}^{3}$, Math. Comput. Appl., 1(2) (1996), 142-148.
https://doi.org/10.3390/mca1020142
- Veldkamp, G. R., On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics, Mechanism and Machine Theory, 11(2) (1976), 141-156.
https://doi.org/10.1016/0094-114X(76)90006-9
- Yaylı, Y., Çalışkan, A., Uğurlu, H. H., The E. Study maps of circles on dual hyperbolic and Lorentzian unit spheres $H_{0}^{2}$, and $S_{1}^{2}$, Math. Proc. R. Ir. Acad., 102A(1) (2002), 37-47.
- Yücesan, A., Çöken, A. C., Ayyıldız, N., On the dual Darboux rotation axis of the timelike dual space curve, Balkan J. Geom. App., 7(2) (2002), 137–142.
- Yücesan, A., Ayyıldız, N., Çöken, A. C., On rectifying dual space curves, Rev. Mat. Complut., 20(2) (2007), 497–506
Associated curves of a Frenet curve in the dual Lorentzian space
Year 2022,
Volume: 71 Issue: 1, 285 - 304, 30.03.2022
Bahar Abalı
Ahmet Yücesan
Abstract
In this work, we firstly introduce notions of principal directed curves and principal donor curves which are associated curves of a Frenet curve in the dual Lorentzian space D31D13. We give some relations between the curvature and the torsion of a dual principal directed curve and the curvature and the torsion of a dual principal donor curve. We show that the dual principal directed curve of a dual general helix is a plane curve and obtain the equation of dual general helix by using position vector of plane curve. Then we show that the principal donor curve of a circle in $\mathbb{D}^{2}$ or a hyperbola in $\mathbb{D}_{1}^{2}$ and the principal directed curve of a slant helix in $\mathbb{D}_{1}^{3}$ are a helix and general helix, respectively. We explain with an example for the second case. Finally, according to causal character of the principal donor curve of principal directed rectifying curve in $\mathbb{D}_{1}^{3}$, we show this curve to correspond to any timelike or spacelike ruled surface in Minkowski 3−space R31R13.
References
- Abalı, B, Associated curves of Frenet curves in the dual Lorentzian space, MSc Thesis, Suleyman Demirel University, Isparta, 2019.
- Akutagawa, K., Nishikawa, S., The Gauss map and spacelike surfaces with prescribed mean curvature in Minkowski 3-Space, Tohoku Math. J., 42(1) (1990), 67-82.
https://doi.org/10.2748/tmj/1178227694
- Ali, A. T., Lopez, R., Slant helices in Minkowski space $E_{1}^{3}$, J. Korean Math. Soc., 48(1) (2011), 159-167. https://doi.org/10.4134/JKMS.2011.48.1.159
- Ayyıldız, N., Çöken, A. C., Yücesan, A., A Characterization of dual Lorentzian spherical curves in the dual Lorentzian space, Taiwanese J. Math., 11(4) (2007), 999-1018.
https://doi.org/10.11650/twjm/1500404798
- Barros, M., Ferrandez, A., Lucas, P., Merono, M. A., General helices in the three dimensional Lorentzian space forms, Rocky Mountain J. Math., 31(2) (2001), 373-388.
- Chen, B. Y., When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly, 110(2) (2003), 147-152. https://doi.org/10.1080/00029890.2003.11919949
- Choi, J. H., Kim, Y. H., Associated curves of a Frenet curve and their applications, Appl. Math. Comput., 218(18) (2012), 9116-9124. https://doi.org/10.1016/j.amc.2012.02.064
- Choi, J. H., Kim, Y. H., Ali, A. T., Some associated curves of Frenet non-lightlike curves in $E_{1}^{3}$, J. Math. Anal. Appl., 394(2) (2012), 712-723. https://doi.org/10.1016/j.jmaa.2012.04.063
- Guggenheimer, H. W., Differential Geometry, McGraw-Hill, New York, 1963.
- İlarslan, K., Nesovic, E., Petrovic, M., Some characterizations of rectifying curves in the Minkowski 3-Space, Novi Sad J. Math., 33(2) (2003), 23-32.
- Lee J. W., Choi, J. H., Jin, D. H., The explicit determination of dual plane curves and dual helices in terms of its dual curvature and dual torsion, Demonstr. Math., 47(1) (2014), 156-169. https://doi.org/10.2478/dema-2014-0013
- Lopez, R., Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7(1) (2014), 44-107.
- O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, London, 1983.
- Ozbey, E., Oral, M., A study on rectifying curves in the dual Lorentzian space, Bull. Korean Math. Soc., 46(5) (2009), 967-978. https://doi.org/10.4134/BKMS.2009.46.5.967
- Sağlam, D., Ozkan, S., Ozdamar, D., Slant helices in dual Lorentzian space $D_{1}^{3}$, Natural Science and Discovery, 2(1) (2016) ,3-10.
- Uğurlu, H. H., Çalışkan, A., The study mapping for directed space-like and timelike lines in Minkowski 3-Space $R_{1}^{3}$, Math. Comput. Appl., 1(2) (1996), 142-148.
https://doi.org/10.3390/mca1020142
- Veldkamp, G. R., On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics, Mechanism and Machine Theory, 11(2) (1976), 141-156.
https://doi.org/10.1016/0094-114X(76)90006-9
- Yaylı, Y., Çalışkan, A., Uğurlu, H. H., The E. Study maps of circles on dual hyperbolic and Lorentzian unit spheres $H_{0}^{2}$, and $S_{1}^{2}$, Math. Proc. R. Ir. Acad., 102A(1) (2002), 37-47.
- Yücesan, A., Çöken, A. C., Ayyıldız, N., On the dual Darboux rotation axis of the timelike dual space curve, Balkan J. Geom. App., 7(2) (2002), 137–142.
- Yücesan, A., Ayyıldız, N., Çöken, A. C., On rectifying dual space curves, Rev. Mat. Complut., 20(2) (2007), 497–506