Research Article
BibTex RIS Cite
Year 2022, Volume: 71 Issue: 1, 273 - 284, 30.03.2022
https://doi.org/10.31801/cfsuasmas.939096

Abstract

References

  • Deger, A. H., Besenk, M., Guler, B. O., On suborbital graphs and related continued fractions, Applied Mathematics and Computation, 218 (2011). DOI:10.1016/j.amc.2011.03.065
  • Guler, B. O., Besenk, M., Deger, A. H., Kader, S., Elliptic elements and circuits in suborbital graphs, Hacet, J. Math Stat., 40(2) (2011), 203-210.
  • Guler, B. O., Kor, T., Sanlı, Z., Solution to some congruence equations via suborbital graphs, Springer Plus, 5 (2016), 1327. DOI:10.1186/s40064-016-3016-5
  • Jones, G. A., Singerman, D., Wicks, K., The Modular Group and Generalized Farey Graphs, London Math. Soc. Lecture Note Series, CUP, Cambridge, 160, 1991, 316-338.
  • Lee, G.Y., Kim, J.S., Cho, S.H., Some combinatorial identities via Fibonacci numbers, Discrete Applied Mathematics, 130(3) (2003), 527-534. DOI:10.1016/S0166-218X(03)00331-7
  • Koshy, T. Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, 2001.
  • Akbas, M., Kor, T., Kesicioglu, Y., Disconnectedness of the subgraph $F^{3}$ for the group $\Gamma^3$, Journal of Inequalities and Applications, 283 (2013). DOI: 10.1186/1029-242X-2013-283
  • Keskin, R. Suborbital graphs for the normalizer of $\Gamma_{0}(m)$, European Journal of Combinatorics, 27 (2006), 193-206. DOI:10.1016/j.ejc.2004.09.004
  • Keskin, R., Demirturk, B., On suborbital graphs for the normalizer of $\Gamma_{0}(n)$, Electron. J. of Combin., 16(1) (2009), 116-133.
  • Falcon, S., Plaza, A., The k-Fibonacci sequence and Pascal 2-triangle, Chaos, Solitons and Fractals, 33(1) (2007), 38-49. DOI: 10.1016/j.chaos.2006.10.022
  • Kader, S., Guler, B. O., On suborbital graphs for extended modular group ˆΓ, Graphs and Combinatorics, 29 (2013), 1813–1825. DOI:10.1007/s00373-012-1226-3
  • Koroglu, T., Guler B. O., Sanlı, Z., Suborbital graphs for the Atkin Lehner group, Turk. J. of Math., 41 (2017), 235–243. DOI:10.3906/mat-1602-10

Some group actions and Fibonacci numbers

Year 2022, Volume: 71 Issue: 1, 273 - 284, 30.03.2022
https://doi.org/10.31801/cfsuasmas.939096

Abstract

The Fibonacci sequence has many interesting properties and studied by many mathematicians. The terms of this sequence appear in nature and is connected with combinatorics and other branches of mathematics. In this paper, we investigate the orbit of a special subgroup of the modular group. Taking

Tc:=(c2+c+1cc21c)Γ0(c2), cZ, c0,Tc:=(c2+c+1−cc21−c)∈Γ0(c2), c∈Z, c≠0,

we determined the orbit 

{Trc():rN}.{Tcr(∞):r∈N}. Each rational number of this set is the form Pr(c)/Qr(c),Pr(c)/Qr(c), where Pr(c)Pr(c) and Qr(c)Qr(c) are the polynomials in Z[c]Z[c]. It is shown that Pr(1)Pr(1) and Qr(1)Qr(1) the sum of the coefficients of the polynomials Pr(c)Pr(c) and Qr(c)Qr(c) respectively, are the Fibonacci numbers, where

$P_{r}(c)=\sum \limits_{s=0}^{r}(
\begin{array}{c}
2r-s \\
s
\end{array}
) c^{2r-2s}+\sum \limits_{s=1}^{r}(
\begin{array}{c}
2r-s \\
s-1
\end{array}) c^{2r-2s+1}$

and

Qr(c)=rs=1(2rss1)c2r2s+2Qr(c)=∑s=1r(2r−ss−1)c2r−2s+2

References

  • Deger, A. H., Besenk, M., Guler, B. O., On suborbital graphs and related continued fractions, Applied Mathematics and Computation, 218 (2011). DOI:10.1016/j.amc.2011.03.065
  • Guler, B. O., Besenk, M., Deger, A. H., Kader, S., Elliptic elements and circuits in suborbital graphs, Hacet, J. Math Stat., 40(2) (2011), 203-210.
  • Guler, B. O., Kor, T., Sanlı, Z., Solution to some congruence equations via suborbital graphs, Springer Plus, 5 (2016), 1327. DOI:10.1186/s40064-016-3016-5
  • Jones, G. A., Singerman, D., Wicks, K., The Modular Group and Generalized Farey Graphs, London Math. Soc. Lecture Note Series, CUP, Cambridge, 160, 1991, 316-338.
  • Lee, G.Y., Kim, J.S., Cho, S.H., Some combinatorial identities via Fibonacci numbers, Discrete Applied Mathematics, 130(3) (2003), 527-534. DOI:10.1016/S0166-218X(03)00331-7
  • Koshy, T. Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, 2001.
  • Akbas, M., Kor, T., Kesicioglu, Y., Disconnectedness of the subgraph $F^{3}$ for the group $\Gamma^3$, Journal of Inequalities and Applications, 283 (2013). DOI: 10.1186/1029-242X-2013-283
  • Keskin, R. Suborbital graphs for the normalizer of $\Gamma_{0}(m)$, European Journal of Combinatorics, 27 (2006), 193-206. DOI:10.1016/j.ejc.2004.09.004
  • Keskin, R., Demirturk, B., On suborbital graphs for the normalizer of $\Gamma_{0}(n)$, Electron. J. of Combin., 16(1) (2009), 116-133.
  • Falcon, S., Plaza, A., The k-Fibonacci sequence and Pascal 2-triangle, Chaos, Solitons and Fractals, 33(1) (2007), 38-49. DOI: 10.1016/j.chaos.2006.10.022
  • Kader, S., Guler, B. O., On suborbital graphs for extended modular group ˆΓ, Graphs and Combinatorics, 29 (2013), 1813–1825. DOI:10.1007/s00373-012-1226-3
  • Koroglu, T., Guler B. O., Sanlı, Z., Suborbital graphs for the Atkin Lehner group, Turk. J. of Math., 41 (2017), 235–243. DOI:10.3906/mat-1602-10
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Zeynep Şanlı 0000-0002-1564-2634

Tuncay Köroğlu 0000-0002-1341-1074

Publication Date March 30, 2022
Submission Date May 18, 2021
Acceptance Date October 22, 2021
Published in Issue Year 2022 Volume: 71 Issue: 1

Cite

APA Şanlı, Z., & Köroğlu, T. (2022). Some group actions and Fibonacci numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(1), 273-284. https://doi.org/10.31801/cfsuasmas.939096
AMA Şanlı Z, Köroğlu T. Some group actions and Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. March 2022;71(1):273-284. doi:10.31801/cfsuasmas.939096
Chicago Şanlı, Zeynep, and Tuncay Köroğlu. “Some Group Actions and Fibonacci Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 1 (March 2022): 273-84. https://doi.org/10.31801/cfsuasmas.939096.
EndNote Şanlı Z, Köroğlu T (March 1, 2022) Some group actions and Fibonacci numbers. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 1 273–284.
IEEE Z. Şanlı and T. Köroğlu, “Some group actions and Fibonacci numbers”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 1, pp. 273–284, 2022, doi: 10.31801/cfsuasmas.939096.
ISNAD Şanlı, Zeynep - Köroğlu, Tuncay. “Some Group Actions and Fibonacci Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/1 (March 2022), 273-284. https://doi.org/10.31801/cfsuasmas.939096.
JAMA Şanlı Z, Köroğlu T. Some group actions and Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:273–284.
MLA Şanlı, Zeynep and Tuncay Köroğlu. “Some Group Actions and Fibonacci Numbers”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 1, 2022, pp. 273-84, doi:10.31801/cfsuasmas.939096.
Vancouver Şanlı Z, Köroğlu T. Some group actions and Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(1):273-84.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.