Research Article
BibTex RIS Cite

Notes on the second-order tangent bundles with the deformed Sasaki metric

Year 2022, Volume: 71 Issue: 2, 502 - 517, 30.06.2022
https://doi.org/10.31801/cfsuasmas.987379

Abstract

The paper deals with the second-order tangent bundle T2MT2M with the deformed Sasaki metric ¯g over an n−dimensional Riemannian manifold gover an n−dimensional Riemannian manifold (M,g)(M,g). We calculate all Riemannian curvature tensor fields of the deformed Sasaki metric ¯g and search Einstein property of and search Einstein property of T2MT2M. Also the weakly symmetry properties of the deformed Sasaki metric are presented.

References

  • Bejan, C. L., Crasmareanu, M., Weakly-symmetry of the Sasakian lifts on tangent bundles, Publ. Math. Debrecen, 83(1-2) (2013), 63-69.
  • Binh, T. Q.,Tamassy, L., On recurrence or pseudo-symmetry of the Sasakian metric on the tangent bundle of a Riemannian manifold, Indian J. Pure Appl. Math., 35(4) (2004), 555-560.
  • Gezer, A., Magden, A., Geometry of the second-order tangent bundles of Riemannian manifolds, Chin. Ann. Math. Ser. B, 38(4) (2017), 985-998. DOI:10.1007/s11401-017-1107-4.
  • De Leon M., Vazquez, E., On the geometry of the tangent bundles of order 2, Analele Universitatii Bucuresti Matematica, 34 (1985), 40-48.
  • Djaa, M., Gancarzewicz, J., The geometry of tangent bundles of order r, Boletin Academia, Galega de Ciencias, 4 (1985), 147-165.
  • Dodson, C. T. J., Radivoiovici, M. S., Tangent and frame bundles order two, Analele Stiintifice ale Universitatii Al. I. Cuza, 28 (1982), 63-71.
  • Ishikawa, S., On Riemannian metrics of tangent bundles of order 2 of Riemannian manifolds, Tensor (N.S.), 34(2) (1980), 173-178.
  • Magden, A., Gezer, A., Karaca, K., Some problems concerning with Sasaki metric on the second-order tangent bundles, Int. Electron. J. Geom., 13(2) (2020), 75–86. DOI:10.36890/iejg.750905.
  • Morimoto, A., Liftings of tensor fields and connections to tangent bundles of higher order, Nagoya Math. J., 40 (1970), 99-120.
  • Tani, M., Tensor fields and connections in cross-sections in the tangent bundles of order 2, Kodai Math. Sem. Rep., 21 (1969), 310-325.
  • Yano, K., Ako, M., On certain operators associated with tensor field, Kodai Math. Sem. Rep., 20 (1968), 414-436.
  • Yano, K., Ishihara, S., Tangent and Cotangent Bundles: Differential Geometry, Marcel Dekker, Inc., 420 p, New York, 1973.
Year 2022, Volume: 71 Issue: 2, 502 - 517, 30.06.2022
https://doi.org/10.31801/cfsuasmas.987379

Abstract

References

  • Bejan, C. L., Crasmareanu, M., Weakly-symmetry of the Sasakian lifts on tangent bundles, Publ. Math. Debrecen, 83(1-2) (2013), 63-69.
  • Binh, T. Q.,Tamassy, L., On recurrence or pseudo-symmetry of the Sasakian metric on the tangent bundle of a Riemannian manifold, Indian J. Pure Appl. Math., 35(4) (2004), 555-560.
  • Gezer, A., Magden, A., Geometry of the second-order tangent bundles of Riemannian manifolds, Chin. Ann. Math. Ser. B, 38(4) (2017), 985-998. DOI:10.1007/s11401-017-1107-4.
  • De Leon M., Vazquez, E., On the geometry of the tangent bundles of order 2, Analele Universitatii Bucuresti Matematica, 34 (1985), 40-48.
  • Djaa, M., Gancarzewicz, J., The geometry of tangent bundles of order r, Boletin Academia, Galega de Ciencias, 4 (1985), 147-165.
  • Dodson, C. T. J., Radivoiovici, M. S., Tangent and frame bundles order two, Analele Stiintifice ale Universitatii Al. I. Cuza, 28 (1982), 63-71.
  • Ishikawa, S., On Riemannian metrics of tangent bundles of order 2 of Riemannian manifolds, Tensor (N.S.), 34(2) (1980), 173-178.
  • Magden, A., Gezer, A., Karaca, K., Some problems concerning with Sasaki metric on the second-order tangent bundles, Int. Electron. J. Geom., 13(2) (2020), 75–86. DOI:10.36890/iejg.750905.
  • Morimoto, A., Liftings of tensor fields and connections to tangent bundles of higher order, Nagoya Math. J., 40 (1970), 99-120.
  • Tani, M., Tensor fields and connections in cross-sections in the tangent bundles of order 2, Kodai Math. Sem. Rep., 21 (1969), 310-325.
  • Yano, K., Ako, M., On certain operators associated with tensor field, Kodai Math. Sem. Rep., 20 (1968), 414-436.
  • Yano, K., Ishihara, S., Tangent and Cotangent Bundles: Differential Geometry, Marcel Dekker, Inc., 420 p, New York, 1973.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Kübra Karaca 0000-0002-6329-4435

Aydın Gezer 0000-0001-7505-0385

Abdullah Mağden 0000-0002-6025-629X

Publication Date June 30, 2022
Submission Date August 26, 2021
Acceptance Date December 22, 2021
Published in Issue Year 2022 Volume: 71 Issue: 2

Cite

APA Karaca, K., Gezer, A., & Mağden, A. (2022). Notes on the second-order tangent bundles with the deformed Sasaki metric. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 71(2), 502-517. https://doi.org/10.31801/cfsuasmas.987379
AMA Karaca K, Gezer A, Mağden A. Notes on the second-order tangent bundles with the deformed Sasaki metric. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. June 2022;71(2):502-517. doi:10.31801/cfsuasmas.987379
Chicago Karaca, Kübra, Aydın Gezer, and Abdullah Mağden. “Notes on the Second-Order Tangent Bundles With the Deformed Sasaki Metric”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71, no. 2 (June 2022): 502-17. https://doi.org/10.31801/cfsuasmas.987379.
EndNote Karaca K, Gezer A, Mağden A (June 1, 2022) Notes on the second-order tangent bundles with the deformed Sasaki metric. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71 2 502–517.
IEEE K. Karaca, A. Gezer, and A. Mağden, “Notes on the second-order tangent bundles with the deformed Sasaki metric”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 71, no. 2, pp. 502–517, 2022, doi: 10.31801/cfsuasmas.987379.
ISNAD Karaca, Kübra et al. “Notes on the Second-Order Tangent Bundles With the Deformed Sasaki Metric”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 71/2 (June 2022), 502-517. https://doi.org/10.31801/cfsuasmas.987379.
JAMA Karaca K, Gezer A, Mağden A. Notes on the second-order tangent bundles with the deformed Sasaki metric. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71:502–517.
MLA Karaca, Kübra et al. “Notes on the Second-Order Tangent Bundles With the Deformed Sasaki Metric”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 71, no. 2, 2022, pp. 502-17, doi:10.31801/cfsuasmas.987379.
Vancouver Karaca K, Gezer A, Mağden A. Notes on the second-order tangent bundles with the deformed Sasaki metric. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022;71(2):502-17.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.