Research Article
BibTex RIS Cite

Alüminyum, Magnezyum ve Çelik Malzemelerle Tasarlanmış Tek Hücreli ve Çok Hücreli Çarpışma Kutularının Çarpışma Performanslarının İncelenmesi

Year 2021, Volume: 36 Issue: 2, 523 - 534, 16.08.2021
https://doi.org/10.21605/cukurovaumfd.982931

Abstract

Çarpışma kutuları, olası bir kaza esnasında sürücü ve araç içi yolcularda oluşabilecek yaralanmaları en aza indirmek için kullanılan pasif güvenlik sistemi elemanlarındandır. Araştırmacılar çarpışma kutularının çarpışma performansını iyileştirmek için farklı yapılar ve malzemeler kullanmaktadır. Bu çalışmada alüminyum alaşım AA6061-O, magnezyum alaşım AZ31B ve DP600 çeliğinden tasarlanan kare, altıgen ve dairesel dış duvara sahip tek hücreli ve çok hücreli olmak üzere dokuz farklı çarpışma kutusu sonlu elemanlar analizi ile incelenmiştir. Çalışmada kullanılan sonlu elemanlar modelleri literatürden elde edilen deneysel veriler ile doğrulanmıştır. Farklı malzemelerden tasarlanmış çarpışma kutuları en büyük çarpışma kuvveti, çarpışma kuvveti verimi ve özgül enerji sönümleme kapasiteleri açısından incelenmiştir. İnceleme sonucunda aynı kesite sahip çarpışma kutuları içinde yırtılmalara maruz kalmasına rağmen AZ31B malzemeli modellerin daha yüksek özgül enerji sönümleme kapasitesine sahip olduğu görülmüştür. Ayrıca çok hücreli yapılar tek hücreli yapılara daha iyi çarpışma performansı sergilemiştir.

References

  • 1. Abramowicz, W., Jones, N., 1984. Dynamic Axial Crushing of Square Tubes, International Journal of Impact Engineering, 2(2), 179-208.
  • 2. Langseth, M., Hopperstad, O.S., Berstad, T., 1999. Crashworthiness of Aluminium Extrusions: Validation of Numerical Simulation, Effect of Mass Ratio and Impact Velocity, International Journal of Impact Engineering, 22(9-10), 829-854.
  • 3. Rossi, A., Fawaz, Z., Behdinan, K., 2005. Numerical Simulation of the Axial Collapse of Thin-walled Polygonal Section Tubes. Thin- walled Structures, 43(10), 1646-1661.
  • 4. Hou, S., Li, Q., Long, S., Yang, X., Li, W., 2007. Design Optimization of Regular Hexagonal Thin-walled Columns with Crashworthiness Criteria, Finite Elements in Analysis and Design, 43(6-7), 555-565.
  • 5. Guillow, S.R., Lu, G., Grzebieta, R.H., 2001. Quasi-static Axial Compression of Thin- walled Circular Aluminium Tubes, International Journal of Mechanical Sciences, 43(9), 2103-2123.
  • 6. Zarei, H.R., Kröger, M., 2006. Multiobjective Crashworthiness Optimization of Circular Aluminum Tubes, Thin-walled Structures, 44(3), 301-308.
  • 7. Tarlochan, F., Samer, F., Hamouda, A.M.S., Ramesh, S., Khalid, K., 2013. Design of Thin Wall Structures for Energy Absorption Applications: Enhancement of Crashworthiness Due to Axial and Oblique Impact Forces, Thin-walled Structures, 71, 7-17.
  • 8. Yamashita, M., Gotoh, M., Sawairi, Y., 2003. Axial Crush of Hollow Cylindrical Structures with Various Polygonal Cross-sections: Numerical Simulation and Experiment, Journal of Materials Processing Technology, 140(1-3), 59-64.
  • 9. Zhang, X., Zhang, H., 2013. Energy Absorption of Multi-cell Stub Columns Under Axial Compression, Thin-Walled Structures, 68, 156-163.
  • 10. Huang, H., Xu, S., 2019. Crashworthiness Analysis and Bionic Design of Multi-cell Tubes Under Axial and Oblique Impact Loads, Thin-walled Structures, 144, 106333.
  • 11. Qiu, N., Gao, Y., Fang, J., Feng, Z., Sun, G., Li, Q., 2015. Crashworthiness Analysis and Design of Multi-cell Hexagonal Columns Under Multiple Loading Cases, Finite Elements in Analysis and Design, 104, 89-101.
  • 12. Çavuşoğlu, O., Gürün, H., 2014. Deformasyon Hızının DP600 ve DP780 Sac Malzemelerin Mekanik Özelliklerine ve Derin Çekme İşlemine Etkilerinin İncelenmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 29(4), 777-784.
  • 13. Demirci, E., Yildiz, A.R., 2018. An Investigation on the Crash Performance of Magnesium, Aluminum and Advanced High Strength Steels and Different Cross-sections for Vehicle Thin- walled Energy Absorbers, Materials Testing, 60(7-8), 661-668.
  • 14. Kurtuluş, E., Tekin, G., 2021. Conversion of Aluminum Front Bumper System to Magnesium Material by Using Design of Experiment Method, International Journal of Automotive Science and Technology, 5(1), 34-42.
  • 15. Albak, E.İ., 2020. Effects of Sections Added to Multi-cell Square Tubes on Crash Performance, Materials Testing, 62(5), 471-480.
  • 16. Altair Hyperworks, 2019. Radioss user guide.
  • 17. Zhang, X., Zhang, H., 2014, Axial Crushing of Circular Multi-cell Columns, International Journal of Impact Engineering, 65, 110-125.
  • 18. Steglich, D., Bohlen, J., Tian, X., Riekehr, S., Kashaev, N., Bargmann, S., Letzig, D., Kainer, K.U., Huber, N., 2013. Crashworthiness of Magnesium Sheet Structures, In Materials Science Forum, 765, 590-594.
  • 19. Xu, F., Sun, G., Li, G., Li, Q., 2014. Experimental Study on Crashworthiness of Tailor-welded Blank (TWB) Thin-walled High-strength Steel (HSS) Tubular Structures, Thin-walled Structures, 74, 12-27.
  • 20. Wang, S., Gao, G., 2018. Performance of Extruded Magnesium Alloy AZ31B Circular Tubes Under Uniaxial Compression, Thin-walled Structures, 131, 464-474.
  • 21. Shu, C., Zhao, S., Hou, S., 2018. Crashworthiness Analysis of Two-layered Corrugated Sandwich Panels Under Crushing Loading, Thin-walled Structures, 133, 42-51.
  • 22. Sun, G., Pang, T., Fang, J., Li, G., Li, Q., 2017. Parameterization of Criss-cross Configurations for Multiobjective Crashworthiness Optimization, International Journal of Mechanical Sciences, 124, 145-157.

Investigation for Crashworthiness Performance of Single-cell and Multi-cell Crash Boxes Designed with Aluminum, Magnesium and Steel Materials

Year 2021, Volume: 36 Issue: 2, 523 - 534, 16.08.2021
https://doi.org/10.21605/cukurovaumfd.982931

Abstract

Crash boxes are one of the passive safety system elements used to minimize injuries to drivers and passengers during a possible accident. Researchers use different structures and materials to enhance the crashworthiness performance of crash boxes. In this study, designed from aluminum alloy AA6061-O, magnesium alloy AZ31B and DP600 steel, nine different collision boxes, single-cell and multi-cell with square, hexagonal and circular outer walls, are examined by finite element analysis. The finite element model used in the study has been validated with the experimental data obtained from the literature. Crash boxes designed from different materials have been examined in terms of the maximum crash force, crush force efficiency and specific energy absorption capacity. As a result of the examination, although failures are observed in crash boxes with the same cross-section, it is observed that models with AZ31B material had higher specific energy absorption capacity. In addition, multi-cell structures have shown better crash performance than single-cell structures.

References

  • 1. Abramowicz, W., Jones, N., 1984. Dynamic Axial Crushing of Square Tubes, International Journal of Impact Engineering, 2(2), 179-208.
  • 2. Langseth, M., Hopperstad, O.S., Berstad, T., 1999. Crashworthiness of Aluminium Extrusions: Validation of Numerical Simulation, Effect of Mass Ratio and Impact Velocity, International Journal of Impact Engineering, 22(9-10), 829-854.
  • 3. Rossi, A., Fawaz, Z., Behdinan, K., 2005. Numerical Simulation of the Axial Collapse of Thin-walled Polygonal Section Tubes. Thin- walled Structures, 43(10), 1646-1661.
  • 4. Hou, S., Li, Q., Long, S., Yang, X., Li, W., 2007. Design Optimization of Regular Hexagonal Thin-walled Columns with Crashworthiness Criteria, Finite Elements in Analysis and Design, 43(6-7), 555-565.
  • 5. Guillow, S.R., Lu, G., Grzebieta, R.H., 2001. Quasi-static Axial Compression of Thin- walled Circular Aluminium Tubes, International Journal of Mechanical Sciences, 43(9), 2103-2123.
  • 6. Zarei, H.R., Kröger, M., 2006. Multiobjective Crashworthiness Optimization of Circular Aluminum Tubes, Thin-walled Structures, 44(3), 301-308.
  • 7. Tarlochan, F., Samer, F., Hamouda, A.M.S., Ramesh, S., Khalid, K., 2013. Design of Thin Wall Structures for Energy Absorption Applications: Enhancement of Crashworthiness Due to Axial and Oblique Impact Forces, Thin-walled Structures, 71, 7-17.
  • 8. Yamashita, M., Gotoh, M., Sawairi, Y., 2003. Axial Crush of Hollow Cylindrical Structures with Various Polygonal Cross-sections: Numerical Simulation and Experiment, Journal of Materials Processing Technology, 140(1-3), 59-64.
  • 9. Zhang, X., Zhang, H., 2013. Energy Absorption of Multi-cell Stub Columns Under Axial Compression, Thin-Walled Structures, 68, 156-163.
  • 10. Huang, H., Xu, S., 2019. Crashworthiness Analysis and Bionic Design of Multi-cell Tubes Under Axial and Oblique Impact Loads, Thin-walled Structures, 144, 106333.
  • 11. Qiu, N., Gao, Y., Fang, J., Feng, Z., Sun, G., Li, Q., 2015. Crashworthiness Analysis and Design of Multi-cell Hexagonal Columns Under Multiple Loading Cases, Finite Elements in Analysis and Design, 104, 89-101.
  • 12. Çavuşoğlu, O., Gürün, H., 2014. Deformasyon Hızının DP600 ve DP780 Sac Malzemelerin Mekanik Özelliklerine ve Derin Çekme İşlemine Etkilerinin İncelenmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 29(4), 777-784.
  • 13. Demirci, E., Yildiz, A.R., 2018. An Investigation on the Crash Performance of Magnesium, Aluminum and Advanced High Strength Steels and Different Cross-sections for Vehicle Thin- walled Energy Absorbers, Materials Testing, 60(7-8), 661-668.
  • 14. Kurtuluş, E., Tekin, G., 2021. Conversion of Aluminum Front Bumper System to Magnesium Material by Using Design of Experiment Method, International Journal of Automotive Science and Technology, 5(1), 34-42.
  • 15. Albak, E.İ., 2020. Effects of Sections Added to Multi-cell Square Tubes on Crash Performance, Materials Testing, 62(5), 471-480.
  • 16. Altair Hyperworks, 2019. Radioss user guide.
  • 17. Zhang, X., Zhang, H., 2014, Axial Crushing of Circular Multi-cell Columns, International Journal of Impact Engineering, 65, 110-125.
  • 18. Steglich, D., Bohlen, J., Tian, X., Riekehr, S., Kashaev, N., Bargmann, S., Letzig, D., Kainer, K.U., Huber, N., 2013. Crashworthiness of Magnesium Sheet Structures, In Materials Science Forum, 765, 590-594.
  • 19. Xu, F., Sun, G., Li, G., Li, Q., 2014. Experimental Study on Crashworthiness of Tailor-welded Blank (TWB) Thin-walled High-strength Steel (HSS) Tubular Structures, Thin-walled Structures, 74, 12-27.
  • 20. Wang, S., Gao, G., 2018. Performance of Extruded Magnesium Alloy AZ31B Circular Tubes Under Uniaxial Compression, Thin-walled Structures, 131, 464-474.
  • 21. Shu, C., Zhao, S., Hou, S., 2018. Crashworthiness Analysis of Two-layered Corrugated Sandwich Panels Under Crushing Loading, Thin-walled Structures, 133, 42-51.
  • 22. Sun, G., Pang, T., Fang, J., Li, G., Li, Q., 2017. Parameterization of Criss-cross Configurations for Multiobjective Crashworthiness Optimization, International Journal of Mechanical Sciences, 124, 145-157.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Emre İsa Albak 0000-0001-9215-0775

Publication Date August 16, 2021
Published in Issue Year 2021 Volume: 36 Issue: 2

Cite

APA Albak, E. İ. (2021). Alüminyum, Magnezyum ve Çelik Malzemelerle Tasarlanmış Tek Hücreli ve Çok Hücreli Çarpışma Kutularının Çarpışma Performanslarının İncelenmesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(2), 523-534. https://doi.org/10.21605/cukurovaumfd.982931