Review
BibTex RIS Cite

Bacillus spp.’nin Et Ürünlerinde Probiyotik Olarak Kullanımları

Year 2017, Volume: 32 Issue: 2, 47 - 60, 29.12.2017

Abstract

Probiyotikler, sağlığa yararlı etkileri nedeniyle çeşitli gıda
ürünlerinde kullanılmaktadır. Probiyotik gıdaların üretiminde en fazla
kullanılan bakteriler, Lactobacillus
ve Bifidobacterium gibi laktik asit
bakterileri olmasına rağmen bu bakteriler ısıl işleme dayanamamaktadır. Bu yüzden
son zamanlarda, probiyotik özelliğe sahip ve ısıl işleme dirençli olan bazı Bacillus cinsine ait türlerle ilgili
çalışmalar yapılmaktadır. Bu derlemede, probiyotik özelliğe sahip Bacillus cinslerinin, et ve et
ürünlerinde kullanımına yönelik bazı çalışmalar özetlenmiştir. 

References

  • Abdullah, N. R., Zamri, A. N. M., Sabow, A. B., Kareem, K. Y., Nurhazirah, S., Ling, F. H., Sazili, A. Q., Loh, T. C., (2015) Physico-chemical properties of breast muscle in broiler chickens fed probiotics, antibiotics or antibiotic-probiotic mix. J. Appl. Anim. Res., 45:1, 64-70.
  • Adams, M. R. Jayamanne, V. S., (2006) Determination of survival, identity and stress resistance of probiotic bifidobacteria in bio-yoghurts. Letters in Applied Microbiology, 42, 189–194.
  • Alexopoulos, C., Georgoulakis, I. E., Tzivara, A., Kyriakis, C. S., Govaris, A., Kyriakis, S. C., (2004) Field evaluation of the effect of a probiotic-containing Bacillus licheniformis and Bacillus subtilis spores on the health status, performance, and carcass quality of grower and finisher pigs. Journal of Veterinary Medicine Series A, 51(6), 306-312.
  • Almada, C. N., Nunes de Almada, C., Martinez, R. C. R., Sant'Ana, A. S., (2015) Characterization of the intestinal microbiota and its interaction with probiotics and health impacts. Applied Microbiology and Biotechnology, 99, 4175–4199.
  • Aşan Özüsağlam, M., (2010) Hayvan Beslemede Bacillus coagulans Bakterisinin Probiyotik Olarak Önemi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 5(1): 50-57.
  • Aunpad, R., Sripotong, N., Khamlak, K., Inchidjuy, S., Rattanasinganchan, P., Pipatsatitpong, D., (2011) Isolation and characterization of bacteriocin with anti-listeria and anti-MRSA activity produced by food and soil isolated bacteria. African Journal of Microbiology Research, 5, 5297-5303.
  • Baka, M., Noriega, E., Tsakali, E., Van, I., Van Impe, J. F. M., (2015) Influence of compositionand processing of Frankfurter sausages on the growth dynamics of Listeria monocytogenes under vacuum. Food Research International, 70, 94–100.
  • Bali, V., Panesar, P. S., Bera, M. B., (2011) Isolation, screening and evaluation of antimicrobial activity of potential bacteriocin producing lactic acid bacteria isolate. Microbiol J.; 1(3): 113-119.
  • Barbosa, T. M., Serra, C. R., La Ragione, R. M., Woodward, M. J. Henriques, A. O., (2005) Screening for Bacillus isolates in the broiler gastrointestinal tract. Applied and Environmental Microbiology, 71, 968-978.
  • Cutting, S. M., (2011) Bacillus probiotics. Food Microbiol. 28, 214-220.
  • Cutting, S. M., (2002) Bacillus probiotics; spore germination in the gastrointestinal tract. Appl. Environ. Microbiol. 68:2344-2352.
  • Devuyst, L., Vandamme, E. J., (1994) Antimicrobial potential of lactic acid bacteria. In: De Vuyst L,Vandamme EJ.(eds). Bacteriocins of lactic acid bacteria. Online: Springer; p. 91- 142.
  • EFSA, (2013) Scientific Opinion On The Maintenance Of The List Of QPS Biological Agents Intentionally Added To Food and Feed (2013 update). 11(11), 3449.
  • EFSA, (2014) EFSA Panel on additives and products or substances used in animal feed (FEEDAP); guidance on the assessment of the toxigenic potential of Bacillus species used in animal nutrition (question no EFSA-Q-2013-00303, adopted 08 April 2014 by European Food Safety Authority).
  • EFSA J. 12 (3665), 10. http:// dx.doi.org/10.2903/j.efsa.2014.3665. Available at: http://www.efsa.europa.eu/ en/efsajournal/pub/3665.
  • Fan, Y., Zhao, L., Ma, Q., Li X., Shi, H., Zhou, T., Zhang, J., Ji, C., (2013) Effects of Bacillus subtilis ANSB060 on growth performance, meat quality and aflatoxin residues in broilers fed moldy peanut meal naturally contaminated with aflatoxins. Food and Chemical Toxicology, 59, 748-753.
  • FAO/WHO, (2002) Guidelines for the evaluation of probiotics in food. (London Ontario, Canada).
  • Farzaneh, M., Shi, Z.-Q., Ghassempour, A., Sedaghat, N., Ahmadzadeh, M., Mirabolfathy, M., Javan-Nikkhah, M., (2012) Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control, 23(1), 100-106.
  • Gao, X., Ma, Q., Zhao, L., Lei, Y., Shan, Y., Ji, C., (2011) Isolation of Bacillus subtilis: screening for aflatoxins B-1, M-1, and G(1) detoxification. Eur. Food Res. Technol. 232, 957- 962.
  • Halimi, B., Dortu, C., Arguelles-Arias, A., Thonart, P., Joris, B., Fickers, P., (2010) Antilisterial activity on poultry meat of amylolysin, a bacteriocin from Bacillus amyloliquefaciens GA1. Probiotics and Antimicrobial Proteins, 2, 120-125.
  • Hong, H. A., Duc, L. H., Cutting, S. M., (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29, 813-835.
  • Hong, H. A., Khaneja, R., Tam, N. M., Cazzato, A., Tan, S., Urdaci, M., Brisson, A., Gasbarrini, A., Barnes, I., Cutting, S. M., (2009) Bacillus subtilis isolated from the human gastrointestinal tract. Res. Microbiol. 160, 134-143.
  • Hyronimus, B., Le Marrec, C., Urdaci, M. C., (1998) Coagulin, a bacteriocin - like inhibitory substance produced by Bacillus coagulans I4. J. Appl. Microbiol; 85: 42-50.
  • Hyronimus, B., Le Marrec, C., Sassi, A. H., Deschamps, A., (2000) Acid And Bile Tolerance Of Spore-Forming Lactic Acid Bacteria. International Journal of Food Microbiology 61:193–197.
  • Ivanovic, S., Pisinov, B., Maslic-Strizak, D., Savic, B., Stojanovic, Z., (2012) Influence of probiotics on quality of chicken meat. Afr. J. Agric. Res., 7:2191-2196.
  • Jafari, M., Alebouyeh, M., Hosseini, H., Mortazavian, A. M., Ghanati, K., Zali, M. R., (2016) Recovery of Bacillus coagulans as a probiotic sporeformer in the raw batter of cocktail sausage as influenced by chopping, formulation and surfactant. International Journal of Life Science and Pharma Research, 2, 39-48.
  • Jafari, M., Mortazavian, M. A., Hosseini, H., (2017a) Effect of household cooking methods on the viability of Bacillus probiotics supplemented in cooked sausage. Nutrion and Food Science Research Vol 4, No 1, 47-56.
  • Jafari, M., Mortazavian, M. A. ve Hosseini, H., Safaei, F., Khaneghah, A. M., Sant’Ana, A. S., (2017b) Probiotic Bacillus: Fate during sausage processing and storage and influence of different culturing conditions on recovery of their spores. Food Research International, 95, 46-51.
  • Jiraphocakul, S., Sullivan, T.W., Shahani, K.M., (1990) Influence of a dried Bacillus subtilis culture and antibiotics on performance and intestinal microflora in turkeys. Poult. Sci. 69, 1966–1973.
  • Kabir, S. M. L., (2009) The role of probiotics in the poultry industry. International Journal of Molecular Sciences, 10, 3531-3546.
  • Kabuki, T., Uenishi, H., Watanabe, M., Seto, Y., Nakajima, H., (2010) Characterization of a bacteriocin, thermophilin, 1277, produced by Streptococcus thermophilus SBT 1277. J. Applied Microbiol; 102: 971-980.
  • Kaewklom, S., Lumlert, Ş., Kraikul, R. A., (2013) Control of Listeria monocytogenes on sliced bologna sausage using a novel bacteriocin, amysin, produced by Bacillus amyloliquefaciens isolated from Thai shrimp paste (Kapi). Food Control, 32, 552-557.
  • Karri, S. K., Majeed, M., Natarajan, S., Sivakumar, A., Ali, F., Pande, A., Majeed, S., (2016) Evaluation Of Anti-Diarrhoeal Activity Of Bacillus coagulans MTCC 5856 And Its Effect On Gastrointestinal Motilıty In Wıstar Rats. Int. J. Pharm. Bio. Sci. 2016 Jan. 7(1):311-316.
  • Khan, M. I., Arshad, M. S., Anjum, F. M., Sameen, A., Aneeq-Ur, R., Gill, W. T., (2011) Meat as a functional food with special reference to probiotic sausages. Food Research International, 44, 3125–3133.
  • Kim, H. W., Miller, D. K., Yan, F., Wang, W., Cheng, H. W., Yuan, H., Kim, B., (2017) Probiotic supplementation and fast freezing to improve quality attributes and oxidation stability of frozen chicken breast muscle. LWT- Food Science and Technology, 75, 34-41.
  • Kra´l, M., Angelovicova, M., Alfaig, E., Walczycka, M., (2013) Meat quality of broiler chickens fed diets with Bacillus subtilis and malic acid additives. Sci. Pap. Anim. Sci. Biotechnol., 46:375-378.
  • Lee, S., Lee, J., Jin, Y. I., Jeong, J. C., Chang, Y. K., Lee, Y., Jeong, Y., Kim, M., (2017) Probiotic characteristics of Bacillus strains isolated from Korean traditional soy sauce. LWT- Food Science and Technology, 79, 518-524.
  • Lisoba, M. P., Bonatto, D., Bizani, J. A., Henriques, Brandelli A., (2006) Characterization of a bacteriocin like substance produced by Bacillus amyloliquifaciens isolated from Brazilian atlantic forest. Int. Microbiol; 9: 111-118.
  • Liu, X., Yan, H., LV, L., Xu, Q., Yin, C., Zhang, K., (2012) Growth performance and meat quality of broiler chickens supplemented with Bacillus licheniformis in drinking water. Asian-Australasian Journal of Animal Sciences, 25, 682-689.
  • Logan, N. A.,, Berkeley, R. C. W., (1984) Identification of Bacillus strains using the API system. Microbiology 130,7: 1871-1882.
  • Ma, Q. G., Gao, X., Zhou, T., Zhao, L. H., Fan, Y., Li, X. Y., Lei, Y. P., Ji, C., Zhang, J.Y., (2012) Protective effect of Bacillus subtilis ANSB060 on egg quality, biochemical and histopathological changes in layers exposed to aflatoxin B-1. Poultry Sci. 91, 2852–2857.
  • Marseglia, G. L., Tosca, M., Cirillo, I., Licari, A., Leone, M., Marseglia, A., Castellazzi, A. M., Ciprandi, G., (2007) Efficacy of Bacillus clausii spores in the prevention of recurrent respiratory infections in children: a pilot study. Ther. Clin. Risk Manag. 3, 13-17.
  • Molnar, A. K., Podmaniczky, B., Kurti, P., Tenk, I., Glavits, R., Virag, G. Y., Szabo, Z.S., (2011) Effect of different concentrations of Bacillus subtilis on growth performance, carcase quality, gut microflora and immune response of broiler chickens. Brit. Poultry Sci. 52, 658–665.
  • Moretro, T., Langsrud, S., (2004) Listeria monocytogenes: biofilm formation and persistence in food-processing environments. Biofilms, 1, 107-121.
  • Nicholson, W. L., Munakata, N., Horneck, G., Melsosh, H. J. Setlow, P., (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews, 64, 548-572.
  • Nithya, V., Halami, P., (2013) Evaluation of the probiotic characteristics of Bacillus species isolated from different food sources. Annals of Microbiology, 63, 129–137.
  • Pattnaik, P., Grover, S., Batish, V. K., (2005) Effect of environmental factors on production of lichenin, a chromosomally encoded bacteriocin-like compound produced by Bacillus licheniformis 26L-10/3RA. Microbiology Research, 160, 213-218.
  • Popova, T., (2017) Effect of probiotics in poultry for improving meat quality. Current Opinion in Food Science, 14, 72-77.
  • Raksha Rao, K., Vipin, A. V., Hariprasad, P., Anu Appaiah, K. A., Venkateswaron, G., (2017) Biological detoxification of Aflatoxin B by Bacillus licheniformis CFRI. Food Conntrol, 71, 234-241.
  • Ruiz, L., Ruas-Madiedo, P., Gueimonde, M., de los Reyes-Gavilán, C. G., Margolles, A., Sánchez, B., (2011) How do Bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes and Nutrition, 6(3), 307–318.
  • Samanya, M., Yamauchi, K., (2002) Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comparative Biochemistry and Physiology Part A, 133, 96-104.
  • Sangare, L., Zhao, Y., Folly, Y. M. E., Chang, J., Li, J., Selvaraj, J. N., .Liu, Y., (2014) Aflatoxin B1 degradation by a Pseudomonas strain. Toxins, 6(10), 3028-3040.
  • Santoso, U., Tanaka, K., Ohtani, S., (1995) Effect of dried Bacillus subtilis culture on growth, body composition and hepatic lipogenic enzyme activity in female broiler chicks. Br. J. Nutr. 74, 523–529.
  • Santoso, U., Tanaka, K., Ohtani, S. Sakaida, M., (2001) Effect of fermented product from Bacillus subtilis on feed conversion efficiency, lipid accumulation and ammonia production in broiler chicks. Asian–Aust. J. Anim. Sci. 14, 333–337.
  • Schallmey, M., Singh, A., Ward, O. P., (2004) Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50, 1-17.
  • Schillinger, U., Chung, H. S., Keppler, K., Holzapfel, W. H., (1998) Use of bacteriocinogenic lactic acid bacteria to inhibit spontaneous nisin-resistant mutants of Listeria monocytogenes Scott A. Journal of Applied Microbiology, 85, 657-663.
  • Taguchi G., (1986) Introduction to quality engineering: designing quality into products and processes. Tokyo: Asian Productivity Organization. p: 191.
  • Tam, N. K. M., Uyen, N. Q., Hong, H. A., Duc, L. H., Hoa, T. T., Serra, C. R., Henriques, A. O., Cutting, S. M., (2006) The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188, 2692-2700.
  • Tamura, M., (1989) Development of low-smelling natto. Lifesci. Biotechnol. 5, 104–108.
  • Tompkins, T. A., Xu, X., Ahmarani, J., (2010) A comprehensive review of post-market clinical studies performed in adults with an Asian probiotic formulation. Benef. Microbes 1, 93-106.
  • Tonouti, A., Oka, H., Kurotaki, K., Takeda, K., (2000) Isolation of Bacillus subtilis (natto) useful for the manufacture of natto. Bull. Facult. Agric. Hirosaki Univ. 3, 14–18.
  • Urdaci, M. C., Bressollier, P., Pinchuk, I., (2004) Bacillus clausii probiotic strains: Antimicrobial and immunomodulatory activities. Journal of Clinical Gastroenterology, 38, 86–90.
  • Venema, K., do Carmo, A. P., (2015) Probiotics and prebiotics: Current research and future trends. In K. Venema, & A. P. do Carmo (Eds.), Probiotics and prebiotics: Current research and future trends, 3–12.
  • Xie, J., Rijun Z., Changjiang, S., Yaoqi G., (2009) Isolation and characterization of bacteriocin produced by an isolated Bacillus subtilis LEB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr. J. Biotechnol; 8(20): 5611- 5619.
  • Zhang, Z. F., Zhou, T. X., Ao, X., Kim, I. H., (2012) Effects of b-glucan and Bacillus subtilis on growth performance, blood profiles, relative organ weight and meat quality in broilers fed maizeesoybean meal based diets. Livestock Science, 150, 419-424.
  • Zhou, X., Wang, Y., Gu, Q., Li, W., (2010) Effect of dietary probiotic, Bacillus coagulans, on growth performance, chemical composition, and meat quality of Guangxi yellow chicken. Poultry Science, 89, 588-593.
Year 2017, Volume: 32 Issue: 2, 47 - 60, 29.12.2017

Abstract

References

  • Abdullah, N. R., Zamri, A. N. M., Sabow, A. B., Kareem, K. Y., Nurhazirah, S., Ling, F. H., Sazili, A. Q., Loh, T. C., (2015) Physico-chemical properties of breast muscle in broiler chickens fed probiotics, antibiotics or antibiotic-probiotic mix. J. Appl. Anim. Res., 45:1, 64-70.
  • Adams, M. R. Jayamanne, V. S., (2006) Determination of survival, identity and stress resistance of probiotic bifidobacteria in bio-yoghurts. Letters in Applied Microbiology, 42, 189–194.
  • Alexopoulos, C., Georgoulakis, I. E., Tzivara, A., Kyriakis, C. S., Govaris, A., Kyriakis, S. C., (2004) Field evaluation of the effect of a probiotic-containing Bacillus licheniformis and Bacillus subtilis spores on the health status, performance, and carcass quality of grower and finisher pigs. Journal of Veterinary Medicine Series A, 51(6), 306-312.
  • Almada, C. N., Nunes de Almada, C., Martinez, R. C. R., Sant'Ana, A. S., (2015) Characterization of the intestinal microbiota and its interaction with probiotics and health impacts. Applied Microbiology and Biotechnology, 99, 4175–4199.
  • Aşan Özüsağlam, M., (2010) Hayvan Beslemede Bacillus coagulans Bakterisinin Probiyotik Olarak Önemi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 5(1): 50-57.
  • Aunpad, R., Sripotong, N., Khamlak, K., Inchidjuy, S., Rattanasinganchan, P., Pipatsatitpong, D., (2011) Isolation and characterization of bacteriocin with anti-listeria and anti-MRSA activity produced by food and soil isolated bacteria. African Journal of Microbiology Research, 5, 5297-5303.
  • Baka, M., Noriega, E., Tsakali, E., Van, I., Van Impe, J. F. M., (2015) Influence of compositionand processing of Frankfurter sausages on the growth dynamics of Listeria monocytogenes under vacuum. Food Research International, 70, 94–100.
  • Bali, V., Panesar, P. S., Bera, M. B., (2011) Isolation, screening and evaluation of antimicrobial activity of potential bacteriocin producing lactic acid bacteria isolate. Microbiol J.; 1(3): 113-119.
  • Barbosa, T. M., Serra, C. R., La Ragione, R. M., Woodward, M. J. Henriques, A. O., (2005) Screening for Bacillus isolates in the broiler gastrointestinal tract. Applied and Environmental Microbiology, 71, 968-978.
  • Cutting, S. M., (2011) Bacillus probiotics. Food Microbiol. 28, 214-220.
  • Cutting, S. M., (2002) Bacillus probiotics; spore germination in the gastrointestinal tract. Appl. Environ. Microbiol. 68:2344-2352.
  • Devuyst, L., Vandamme, E. J., (1994) Antimicrobial potential of lactic acid bacteria. In: De Vuyst L,Vandamme EJ.(eds). Bacteriocins of lactic acid bacteria. Online: Springer; p. 91- 142.
  • EFSA, (2013) Scientific Opinion On The Maintenance Of The List Of QPS Biological Agents Intentionally Added To Food and Feed (2013 update). 11(11), 3449.
  • EFSA, (2014) EFSA Panel on additives and products or substances used in animal feed (FEEDAP); guidance on the assessment of the toxigenic potential of Bacillus species used in animal nutrition (question no EFSA-Q-2013-00303, adopted 08 April 2014 by European Food Safety Authority).
  • EFSA J. 12 (3665), 10. http:// dx.doi.org/10.2903/j.efsa.2014.3665. Available at: http://www.efsa.europa.eu/ en/efsajournal/pub/3665.
  • Fan, Y., Zhao, L., Ma, Q., Li X., Shi, H., Zhou, T., Zhang, J., Ji, C., (2013) Effects of Bacillus subtilis ANSB060 on growth performance, meat quality and aflatoxin residues in broilers fed moldy peanut meal naturally contaminated with aflatoxins. Food and Chemical Toxicology, 59, 748-753.
  • FAO/WHO, (2002) Guidelines for the evaluation of probiotics in food. (London Ontario, Canada).
  • Farzaneh, M., Shi, Z.-Q., Ghassempour, A., Sedaghat, N., Ahmadzadeh, M., Mirabolfathy, M., Javan-Nikkhah, M., (2012) Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control, 23(1), 100-106.
  • Gao, X., Ma, Q., Zhao, L., Lei, Y., Shan, Y., Ji, C., (2011) Isolation of Bacillus subtilis: screening for aflatoxins B-1, M-1, and G(1) detoxification. Eur. Food Res. Technol. 232, 957- 962.
  • Halimi, B., Dortu, C., Arguelles-Arias, A., Thonart, P., Joris, B., Fickers, P., (2010) Antilisterial activity on poultry meat of amylolysin, a bacteriocin from Bacillus amyloliquefaciens GA1. Probiotics and Antimicrobial Proteins, 2, 120-125.
  • Hong, H. A., Duc, L. H., Cutting, S. M., (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29, 813-835.
  • Hong, H. A., Khaneja, R., Tam, N. M., Cazzato, A., Tan, S., Urdaci, M., Brisson, A., Gasbarrini, A., Barnes, I., Cutting, S. M., (2009) Bacillus subtilis isolated from the human gastrointestinal tract. Res. Microbiol. 160, 134-143.
  • Hyronimus, B., Le Marrec, C., Urdaci, M. C., (1998) Coagulin, a bacteriocin - like inhibitory substance produced by Bacillus coagulans I4. J. Appl. Microbiol; 85: 42-50.
  • Hyronimus, B., Le Marrec, C., Sassi, A. H., Deschamps, A., (2000) Acid And Bile Tolerance Of Spore-Forming Lactic Acid Bacteria. International Journal of Food Microbiology 61:193–197.
  • Ivanovic, S., Pisinov, B., Maslic-Strizak, D., Savic, B., Stojanovic, Z., (2012) Influence of probiotics on quality of chicken meat. Afr. J. Agric. Res., 7:2191-2196.
  • Jafari, M., Alebouyeh, M., Hosseini, H., Mortazavian, A. M., Ghanati, K., Zali, M. R., (2016) Recovery of Bacillus coagulans as a probiotic sporeformer in the raw batter of cocktail sausage as influenced by chopping, formulation and surfactant. International Journal of Life Science and Pharma Research, 2, 39-48.
  • Jafari, M., Mortazavian, M. A., Hosseini, H., (2017a) Effect of household cooking methods on the viability of Bacillus probiotics supplemented in cooked sausage. Nutrion and Food Science Research Vol 4, No 1, 47-56.
  • Jafari, M., Mortazavian, M. A. ve Hosseini, H., Safaei, F., Khaneghah, A. M., Sant’Ana, A. S., (2017b) Probiotic Bacillus: Fate during sausage processing and storage and influence of different culturing conditions on recovery of their spores. Food Research International, 95, 46-51.
  • Jiraphocakul, S., Sullivan, T.W., Shahani, K.M., (1990) Influence of a dried Bacillus subtilis culture and antibiotics on performance and intestinal microflora in turkeys. Poult. Sci. 69, 1966–1973.
  • Kabir, S. M. L., (2009) The role of probiotics in the poultry industry. International Journal of Molecular Sciences, 10, 3531-3546.
  • Kabuki, T., Uenishi, H., Watanabe, M., Seto, Y., Nakajima, H., (2010) Characterization of a bacteriocin, thermophilin, 1277, produced by Streptococcus thermophilus SBT 1277. J. Applied Microbiol; 102: 971-980.
  • Kaewklom, S., Lumlert, Ş., Kraikul, R. A., (2013) Control of Listeria monocytogenes on sliced bologna sausage using a novel bacteriocin, amysin, produced by Bacillus amyloliquefaciens isolated from Thai shrimp paste (Kapi). Food Control, 32, 552-557.
  • Karri, S. K., Majeed, M., Natarajan, S., Sivakumar, A., Ali, F., Pande, A., Majeed, S., (2016) Evaluation Of Anti-Diarrhoeal Activity Of Bacillus coagulans MTCC 5856 And Its Effect On Gastrointestinal Motilıty In Wıstar Rats. Int. J. Pharm. Bio. Sci. 2016 Jan. 7(1):311-316.
  • Khan, M. I., Arshad, M. S., Anjum, F. M., Sameen, A., Aneeq-Ur, R., Gill, W. T., (2011) Meat as a functional food with special reference to probiotic sausages. Food Research International, 44, 3125–3133.
  • Kim, H. W., Miller, D. K., Yan, F., Wang, W., Cheng, H. W., Yuan, H., Kim, B., (2017) Probiotic supplementation and fast freezing to improve quality attributes and oxidation stability of frozen chicken breast muscle. LWT- Food Science and Technology, 75, 34-41.
  • Kra´l, M., Angelovicova, M., Alfaig, E., Walczycka, M., (2013) Meat quality of broiler chickens fed diets with Bacillus subtilis and malic acid additives. Sci. Pap. Anim. Sci. Biotechnol., 46:375-378.
  • Lee, S., Lee, J., Jin, Y. I., Jeong, J. C., Chang, Y. K., Lee, Y., Jeong, Y., Kim, M., (2017) Probiotic characteristics of Bacillus strains isolated from Korean traditional soy sauce. LWT- Food Science and Technology, 79, 518-524.
  • Lisoba, M. P., Bonatto, D., Bizani, J. A., Henriques, Brandelli A., (2006) Characterization of a bacteriocin like substance produced by Bacillus amyloliquifaciens isolated from Brazilian atlantic forest. Int. Microbiol; 9: 111-118.
  • Liu, X., Yan, H., LV, L., Xu, Q., Yin, C., Zhang, K., (2012) Growth performance and meat quality of broiler chickens supplemented with Bacillus licheniformis in drinking water. Asian-Australasian Journal of Animal Sciences, 25, 682-689.
  • Logan, N. A.,, Berkeley, R. C. W., (1984) Identification of Bacillus strains using the API system. Microbiology 130,7: 1871-1882.
  • Ma, Q. G., Gao, X., Zhou, T., Zhao, L. H., Fan, Y., Li, X. Y., Lei, Y. P., Ji, C., Zhang, J.Y., (2012) Protective effect of Bacillus subtilis ANSB060 on egg quality, biochemical and histopathological changes in layers exposed to aflatoxin B-1. Poultry Sci. 91, 2852–2857.
  • Marseglia, G. L., Tosca, M., Cirillo, I., Licari, A., Leone, M., Marseglia, A., Castellazzi, A. M., Ciprandi, G., (2007) Efficacy of Bacillus clausii spores in the prevention of recurrent respiratory infections in children: a pilot study. Ther. Clin. Risk Manag. 3, 13-17.
  • Molnar, A. K., Podmaniczky, B., Kurti, P., Tenk, I., Glavits, R., Virag, G. Y., Szabo, Z.S., (2011) Effect of different concentrations of Bacillus subtilis on growth performance, carcase quality, gut microflora and immune response of broiler chickens. Brit. Poultry Sci. 52, 658–665.
  • Moretro, T., Langsrud, S., (2004) Listeria monocytogenes: biofilm formation and persistence in food-processing environments. Biofilms, 1, 107-121.
  • Nicholson, W. L., Munakata, N., Horneck, G., Melsosh, H. J. Setlow, P., (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews, 64, 548-572.
  • Nithya, V., Halami, P., (2013) Evaluation of the probiotic characteristics of Bacillus species isolated from different food sources. Annals of Microbiology, 63, 129–137.
  • Pattnaik, P., Grover, S., Batish, V. K., (2005) Effect of environmental factors on production of lichenin, a chromosomally encoded bacteriocin-like compound produced by Bacillus licheniformis 26L-10/3RA. Microbiology Research, 160, 213-218.
  • Popova, T., (2017) Effect of probiotics in poultry for improving meat quality. Current Opinion in Food Science, 14, 72-77.
  • Raksha Rao, K., Vipin, A. V., Hariprasad, P., Anu Appaiah, K. A., Venkateswaron, G., (2017) Biological detoxification of Aflatoxin B by Bacillus licheniformis CFRI. Food Conntrol, 71, 234-241.
  • Ruiz, L., Ruas-Madiedo, P., Gueimonde, M., de los Reyes-Gavilán, C. G., Margolles, A., Sánchez, B., (2011) How do Bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes and Nutrition, 6(3), 307–318.
  • Samanya, M., Yamauchi, K., (2002) Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comparative Biochemistry and Physiology Part A, 133, 96-104.
  • Sangare, L., Zhao, Y., Folly, Y. M. E., Chang, J., Li, J., Selvaraj, J. N., .Liu, Y., (2014) Aflatoxin B1 degradation by a Pseudomonas strain. Toxins, 6(10), 3028-3040.
  • Santoso, U., Tanaka, K., Ohtani, S., (1995) Effect of dried Bacillus subtilis culture on growth, body composition and hepatic lipogenic enzyme activity in female broiler chicks. Br. J. Nutr. 74, 523–529.
  • Santoso, U., Tanaka, K., Ohtani, S. Sakaida, M., (2001) Effect of fermented product from Bacillus subtilis on feed conversion efficiency, lipid accumulation and ammonia production in broiler chicks. Asian–Aust. J. Anim. Sci. 14, 333–337.
  • Schallmey, M., Singh, A., Ward, O. P., (2004) Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50, 1-17.
  • Schillinger, U., Chung, H. S., Keppler, K., Holzapfel, W. H., (1998) Use of bacteriocinogenic lactic acid bacteria to inhibit spontaneous nisin-resistant mutants of Listeria monocytogenes Scott A. Journal of Applied Microbiology, 85, 657-663.
  • Taguchi G., (1986) Introduction to quality engineering: designing quality into products and processes. Tokyo: Asian Productivity Organization. p: 191.
  • Tam, N. K. M., Uyen, N. Q., Hong, H. A., Duc, L. H., Hoa, T. T., Serra, C. R., Henriques, A. O., Cutting, S. M., (2006) The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188, 2692-2700.
  • Tamura, M., (1989) Development of low-smelling natto. Lifesci. Biotechnol. 5, 104–108.
  • Tompkins, T. A., Xu, X., Ahmarani, J., (2010) A comprehensive review of post-market clinical studies performed in adults with an Asian probiotic formulation. Benef. Microbes 1, 93-106.
  • Tonouti, A., Oka, H., Kurotaki, K., Takeda, K., (2000) Isolation of Bacillus subtilis (natto) useful for the manufacture of natto. Bull. Facult. Agric. Hirosaki Univ. 3, 14–18.
  • Urdaci, M. C., Bressollier, P., Pinchuk, I., (2004) Bacillus clausii probiotic strains: Antimicrobial and immunomodulatory activities. Journal of Clinical Gastroenterology, 38, 86–90.
  • Venema, K., do Carmo, A. P., (2015) Probiotics and prebiotics: Current research and future trends. In K. Venema, & A. P. do Carmo (Eds.), Probiotics and prebiotics: Current research and future trends, 3–12.
  • Xie, J., Rijun Z., Changjiang, S., Yaoqi G., (2009) Isolation and characterization of bacteriocin produced by an isolated Bacillus subtilis LEB112 that exhibits antimicrobial activity against domestic animal pathogens. Afr. J. Biotechnol; 8(20): 5611- 5619.
  • Zhang, Z. F., Zhou, T. X., Ao, X., Kim, I. H., (2012) Effects of b-glucan and Bacillus subtilis on growth performance, blood profiles, relative organ weight and meat quality in broilers fed maizeesoybean meal based diets. Livestock Science, 150, 419-424.
  • Zhou, X., Wang, Y., Gu, Q., Li, W., (2010) Effect of dietary probiotic, Bacillus coagulans, on growth performance, chemical composition, and meat quality of Guangxi yellow chicken. Poultry Science, 89, 588-593.
There are 66 citations in total.

Details

Subjects Food Engineering
Journal Section Research Article
Authors

Gözde Konuray

Gözde Koç This is me

Zerrin Erginkaya

Publication Date December 29, 2017
Published in Issue Year 2017 Volume: 32 Issue: 2

Cite

APA Konuray, G., Koç, G., & Erginkaya, Z. (2017). Bacillus spp.’nin Et Ürünlerinde Probiyotik Olarak Kullanımları. Çukurova Tarım Ve Gıda Bilimleri Dergisi, 32(2), 47-60.
AMA Konuray G, Koç G, Erginkaya Z. Bacillus spp.’nin Et Ürünlerinde Probiyotik Olarak Kullanımları. Çukurova J. Agric. Food. Sciences. December 2017;32(2):47-60.
Chicago Konuray, Gözde, Gözde Koç, and Zerrin Erginkaya. “Bacillus spp.’nin Et Ürünlerinde Probiyotik Olarak Kullanımları”. Çukurova Tarım Ve Gıda Bilimleri Dergisi 32, no. 2 (December 2017): 47-60.
EndNote Konuray G, Koç G, Erginkaya Z (December 1, 2017) Bacillus spp.’nin Et Ürünlerinde Probiyotik Olarak Kullanımları. Çukurova Tarım ve Gıda Bilimleri Dergisi 32 2 47–60.
IEEE G. Konuray, G. Koç, and Z. Erginkaya, “Bacillus spp.’nin Et Ürünlerinde Probiyotik Olarak Kullanımları”, Çukurova J. Agric. Food. Sciences, vol. 32, no. 2, pp. 47–60, 2017.
ISNAD Konuray, Gözde et al. “Bacillus spp.’nin Et Ürünlerinde Probiyotik Olarak Kullanımları”. Çukurova Tarım ve Gıda Bilimleri Dergisi 32/2 (December 2017), 47-60.
JAMA Konuray G, Koç G, Erginkaya Z. Bacillus spp.’nin Et Ürünlerinde Probiyotik Olarak Kullanımları. Çukurova J. Agric. Food. Sciences. 2017;32:47–60.
MLA Konuray, Gözde et al. “Bacillus spp.’nin Et Ürünlerinde Probiyotik Olarak Kullanımları”. Çukurova Tarım Ve Gıda Bilimleri Dergisi, vol. 32, no. 2, 2017, pp. 47-60.
Vancouver Konuray G, Koç G, Erginkaya Z. Bacillus spp.’nin Et Ürünlerinde Probiyotik Olarak Kullanımları. Çukurova J. Agric. Food. Sciences. 2017;32(2):47-60.

From January 1, 2016 “Çukurova University Journal of Faculty of Agriculture” continuous its publication life as “Çukurova Journal of Agriculture and Food Sciences”.