Research Article
BibTex RIS Cite

Mycelium Biocomposites Produced by Using Wheat Straw and Hemp Fiber

Year 2025, , 110 - 120, 23.01.2025
https://doi.org/10.21205/deufmd.2025277914

Abstract

Expanded polystyrene (EPS) foam is a frequently preferred packaging material due to its durability, lightness and affordable cost. However, its low density makes recycling not preferred for economic reasons, and due to its non-biodegradable nature, it causes high amounts of plastic pollution in the environment. Therefore, many countries have started to ban EPS packaging products. EPS needs to be replaced with bio-based and biodegradable alternatives to reduce environmental impact. Since mycelium-based materials are completely bio-based and biodegradable, they can be presented as a strong candidate for EPS packaging with their dimensionally stable foam structure. However, material properties still need to be improved. By changing the type and size of natural fibers used as medium, the end product properties of mycelium-based biocomposites can be adjusted and improved. In this study, completely bio-based and biodegradable biocomposite foam products were produced using Pleurotus ostreatus mycelium, hemp fiber and wheat straw. For the first time, the effects of adding hemp fiber and wheat straw separately, together, and in different sizes to Pleurotus ostreatus mycelium on the structural, mechanical, thermal, morphological, water absorption, and flammability properties of materials have been characterized. Depending on the substrate type, the compression strength ranged from 21 to 30 kPa, while water absorption varied between 147% and 348%. The materials exhibited temperature resistance up to 234-552°C. No ignition was observed in samples containing hemp during the combustion test lasting up to 90 seconds. Furthermore, in the improvement of product properties a synergistic effect was identified when hemp and wheat straw were used together and it has been shown that mycelium-based biocomposites have the potential as a sustainable alternative to petroleum-based and non-biodegradable polymers.

References

  • [1] Chan, H.H.S., Not, C., 2023. Variations in the Spatial Distribution of Expanded Polystyrene Marine Debris: Are Asian's Coastlines More Affected? Environmental Advances, Cilt. 11, s. 100342.
  • [2] Europe, P., 2021. Plastics—The Facts 2021: An Analysis of European Plastics Production, Demand and Waste Data. Plastics Europe Association of Plastics Manufacturers.
  • [3] Zimele, Z., et al., 2020. Novel Mycelium-Based Biocomposites (MBB) as Building Materials. Journal of Renewable Materials, Cilt. 8(9), s. 1067-1076.
  • [4] Elsacker, E., et al., 2019. Mechanical, Physical and Chemical Characterisation of Mycelium-Based Composites with Different Types of Lignocellulosic Substrates. PLoS One, Cilt. 14, e0213954. DOI: 10.1371/journal.pone.0213954
  • [5] Elsacker, E., et al., 2020. A Comprehensive Framework for the Production of Mycelium-Based Lignocellulosic Composites. Science of the Total Environment, Cilt. 725, s. 138431.
  • [6] Kutbay, N. H., Yavuzcan, H. G., Aktaş, S., 2022. Mantarın Bağlayıcı Olarak Kullanıldığı Bir Kompozit Malzemenin Üretilmesi ve Tutuşma Süresi ile Su Alma Özelliklerinin Tespiti. Politeknik Dergisi, Cilt. 25(4), s. 1701-1711.
  • [7] Li, Y., Pickering, K.L., Farrell, R.L., 2009. Determination of Interfacial Shear Strength of White Rot Fungi Treated Hemp Fibre Reinforced Polypropylene. Composites Science and Technology, Cilt. 69(7), s. 1165-1171.
  • [8] Etinosa, O.P., 2019. Design and Testing of Mycelium Biocomposite. African University of Science and Technology, Materials Science and Engineering, Doktora Tezi, 150s, Nigeria.
  • [9] Haksoy, H., et al., 2020. Deli Bal ve Grayanotoksin’in Karaciğer Dokusu Üzerindeki Etkilerinin Zamana Bağlı Araştırılması. Konuralp Tıp Dergisi, Cilt. 12(1), s. 97-111.
  • [10] Chulikavit, N., et al., 2022. Influence of Growth Rates, Microstructural Properties and Biochemical Composition on the Thermal Stability of Mycelia Fungi. Scientific Reports, Cilt. 12(1), s. 15105.
  • [11] Dorez, G., et al., 2014. Effect of Cellulose, Hemicellulose and Lignin Contents on Pyrolysis and Combustion of Natural Fibers. Journal of Analytical and Applied Pyrolysis, Cilt. 107, s. 323-331.
  • [12] Zhang, L., et al., 2022. Comparison of Lignin Distribution, Structure, and Morphology in Wheat Straw and Wood. Industrial Crops and Products, Cilt. 187, s. 115432.
  • [13] Jiang, L., et al., 2017. Manufacturing of Biocomposite Sandwich Structures Using Mycelium-Bound Cores and Preforms. Journal of Manufacturing Processes, Cilt. 28, s. 50-59.
  • [14] Moussout, H., et al., 2016. Kinetics and Mechanism of the Thermal Degradation of Biopolymers Chitin and Chitosan Using Thermogravimetric Analysis. Polymer Degradation and Stability, Cilt. 130, s. 1-9.
  • [15] Pan, H., et al., 2015. Formation of Self-Extinguishing Flame Retardant Biobased Coating on Cotton Fabrics via Layer-by-Layer Assembly of Chitin Derivatives. Carbohydrate Polymers, Cilt. 115, s. 516-524.
  • [16] Haneef, M., et al., 2017. Advanced Materials from Fungal Mycelium: Fabrication and Tuning of Physical Properties. Scientific Reports, Cilt. 7(1), s. 41292.
  • [17] Program, R.T.P.N.N.T., 2021. National Toxicology Program. 15th Report on Carcinogens.
  • [18] Carpenter, E.J., et al., 1972. Polystyrene Spherules in Coastal Waters. Science, Cilt. 178(4062), s. 749-750.
  • [19] Tsakona, M., Rucevska, I., 2020. Baseline Report on Plastic Waste: Basel Convention. United Nations, s. 1–68.
  • [20] Yang, L., Park, D., Qin, Z., 2021. Material Function of Mycelium-Based Bio-Composite: A Review. Frontiers in Materials, Cilt. 8.
  • [21] Elsacker, E., et al., 2020. A Comprehensive Framework for the Production of Mycelium-Based Lignocellulosic Composites. Science of the Total Environment, Cilt. 725, s. 138431
  • [22] TÜİK, 2022. Bitkisel Üretim İstatistikleri, 2022. TÜİK.
  • [23] Mengeloğlu, F., Alma, M.H., 2002. Buğday Saplarının Kompozit Levha Üretiminde Kullanılması. KSÜ Fen ve Mühendislik Dergisi, Cilt. 5(2), s. 37-48.
  • [24] Yang, W., Guo, F., Wan, Z., 2013. Yield and Size of Oyster Mushroom Grown on Rice/Wheat Straw Basal Substrate Supplemented with Cotton Seed Hull. Saudi Journal of Biological Sciences, Cilt. 20(4), s. 333-338.
  • [25] Jose, J., et al., 2021. Investigations into the Development of a Mycelium Biocomposite to Substitute Polystyrene in Packaging Applications. Arabian Journal for Science and Engineering, Cilt. 46(3), s. 2975-2984.
  • [26] Vârban, R., et al., 2021. Comparative FT-IR Prospecting for Cellulose in Stems of Some Fiber Plants: Flax, Velvet Leaf, Hemp and Jute. Applied Sciences, Cilt. 11(18), s. 8570.
  • [27] Precious, E.O., 2019. Design and Testing of Mycelium Biocomposite. African University of Science and Technology, Materials Science and Engineering, Doktora Tezi.
  • [28] Iordache, O.G., et al., 2018. Novel Myco-Composite Material Obtained with Fusarium Oxysporum.
  • [29] Ghazvinian, A., et al., 2019. Mycelium-Based Bio-Composites for Architecture: Assessing the Effects of Cultivation Factors on Compressive Strength. 37 Education and Research in Computer Aided Architectural Design in Europe and XXIII Iberoamerican Society of Digital Graphics, Joint Conference. Blucher Design Proceedings, s. 505-514.
  • [30] Gou, L., et al., 2021. Morphological and Physico-Mechanical Properties of Mycelium Biocomposites with Natural Reinforcement Particles. Construction and Building Materials, Cilt. 304, s. 124656.
  • [31] Răut, I., et al., 2021. Fungal-Based Biopolymer Composites for Construction Materials. Materials, Cilt. 14(11), s. 2906.
  • [32] Buntsma, J., 2019. An Exploration on Cellulose and Weed Residues from Biomass to Mycelium Composite. Stowa, Amersfoort, Netherlands.
  • [33] Jones, M., et al., 2018. Waste-Derived Low-Cost Mycelium Composite Construction Materials with Improved Fire Safety. Fire and Materials, Cilt. 42(7), s. 816-825.

Buğday Samanı ve Kenevir Lifi ile Üretilen Miselyum Biyokompozitleri

Year 2025, , 110 - 120, 23.01.2025
https://doi.org/10.21205/deufmd.2025277914

Abstract

Genleştirilmiş polistiren (EPS) köpük, dayanıklılığı, hafifliği ve uygun maliyeti nedeniyle sıklıkla tercih edilen bir ambalaj malzemesidir. Bununla birlikte düşük yoğunluğu, geri dönüşümünün ekonomik sebeplerle tercih edilmemesine yol açmakta ve doğada bozunmayan yapısı nedeniyle çevrede yüksek miktarda plastik kirliliğine sebep olmaktadır. Bundan dolayı, birçok ülke EPS ambalaj ürünlerini yasaklamaya başlamıştır. Çevresel etkiyi azaltmak için EPS'nin biyo-esaslı ve biyobozunur alternatiflerle değiştirilmesi gerekmektedir. Miselyum esaslı malzemeler tamamen biyo-esaslı ve biyobozunur oldukları için, boyutsal kararlılığa sahip köpüğümsü yapısı ile EPS ambalaj için güçlü bir aday olarak sunulabilirler. Ancak, malzeme özelliklerinin halen geliştirilmesi gerekmektedir. Besiyeri olarak kullanılan doğal liflerin türü ve boyutu değiştirilerek, miselyum esaslı biyokompozitlerin son ürün özellikleri ayarlanabilir ve geliştirilebilir. Bu çalışmada, Pleurotus ostreatus miselyumu, kenevir lifi ve buğday samanı kullanılarak tamamen biyo-esaslı ve biyobozunur biyokompozit köpük ürünleri üretilmiştir. Bu doğal liflerin türünü ve boyutunu değiştirerek elde edilen biyokompozitlerin özellikleri incelenmiştir. Pleurotus ostreatus miselyumuna kenevir lifi ve buğday samanının ayrı ayrı ve birlikte ve farklı boyutlarda katılması ile malzemelerin yapısal, mekanik, ısıl, morfolojik, su emme ve yanıcılık özelliklerine etkisi ilk kez karakterize edilmiş olup besiyer çeşidine göre basma dayanımı 21-30 kPa, su emme %147-348 arasında değişmiş, 234-552 °C’ye kadar sıcaklık dayanımı göstermiş, 90 saniyeye kadar süren yanma testinde kenevir içeren numunelerde tutuşma görülmemiş olup kenevir ve buğday samanının birlikte kullanılması ürün özelliklerinin geliştirilmesinde sinerjistik etki tespit edilmiştir. Miselyum esaslı biyokompozitlerin petrol esaslı ve doğada bozunmayan polimerlere sürdürülebilir bir alternatif olarak güçlü bir potansiyel taşıdığı gösterilmiştir.

References

  • [1] Chan, H.H.S., Not, C., 2023. Variations in the Spatial Distribution of Expanded Polystyrene Marine Debris: Are Asian's Coastlines More Affected? Environmental Advances, Cilt. 11, s. 100342.
  • [2] Europe, P., 2021. Plastics—The Facts 2021: An Analysis of European Plastics Production, Demand and Waste Data. Plastics Europe Association of Plastics Manufacturers.
  • [3] Zimele, Z., et al., 2020. Novel Mycelium-Based Biocomposites (MBB) as Building Materials. Journal of Renewable Materials, Cilt. 8(9), s. 1067-1076.
  • [4] Elsacker, E., et al., 2019. Mechanical, Physical and Chemical Characterisation of Mycelium-Based Composites with Different Types of Lignocellulosic Substrates. PLoS One, Cilt. 14, e0213954. DOI: 10.1371/journal.pone.0213954
  • [5] Elsacker, E., et al., 2020. A Comprehensive Framework for the Production of Mycelium-Based Lignocellulosic Composites. Science of the Total Environment, Cilt. 725, s. 138431.
  • [6] Kutbay, N. H., Yavuzcan, H. G., Aktaş, S., 2022. Mantarın Bağlayıcı Olarak Kullanıldığı Bir Kompozit Malzemenin Üretilmesi ve Tutuşma Süresi ile Su Alma Özelliklerinin Tespiti. Politeknik Dergisi, Cilt. 25(4), s. 1701-1711.
  • [7] Li, Y., Pickering, K.L., Farrell, R.L., 2009. Determination of Interfacial Shear Strength of White Rot Fungi Treated Hemp Fibre Reinforced Polypropylene. Composites Science and Technology, Cilt. 69(7), s. 1165-1171.
  • [8] Etinosa, O.P., 2019. Design and Testing of Mycelium Biocomposite. African University of Science and Technology, Materials Science and Engineering, Doktora Tezi, 150s, Nigeria.
  • [9] Haksoy, H., et al., 2020. Deli Bal ve Grayanotoksin’in Karaciğer Dokusu Üzerindeki Etkilerinin Zamana Bağlı Araştırılması. Konuralp Tıp Dergisi, Cilt. 12(1), s. 97-111.
  • [10] Chulikavit, N., et al., 2022. Influence of Growth Rates, Microstructural Properties and Biochemical Composition on the Thermal Stability of Mycelia Fungi. Scientific Reports, Cilt. 12(1), s. 15105.
  • [11] Dorez, G., et al., 2014. Effect of Cellulose, Hemicellulose and Lignin Contents on Pyrolysis and Combustion of Natural Fibers. Journal of Analytical and Applied Pyrolysis, Cilt. 107, s. 323-331.
  • [12] Zhang, L., et al., 2022. Comparison of Lignin Distribution, Structure, and Morphology in Wheat Straw and Wood. Industrial Crops and Products, Cilt. 187, s. 115432.
  • [13] Jiang, L., et al., 2017. Manufacturing of Biocomposite Sandwich Structures Using Mycelium-Bound Cores and Preforms. Journal of Manufacturing Processes, Cilt. 28, s. 50-59.
  • [14] Moussout, H., et al., 2016. Kinetics and Mechanism of the Thermal Degradation of Biopolymers Chitin and Chitosan Using Thermogravimetric Analysis. Polymer Degradation and Stability, Cilt. 130, s. 1-9.
  • [15] Pan, H., et al., 2015. Formation of Self-Extinguishing Flame Retardant Biobased Coating on Cotton Fabrics via Layer-by-Layer Assembly of Chitin Derivatives. Carbohydrate Polymers, Cilt. 115, s. 516-524.
  • [16] Haneef, M., et al., 2017. Advanced Materials from Fungal Mycelium: Fabrication and Tuning of Physical Properties. Scientific Reports, Cilt. 7(1), s. 41292.
  • [17] Program, R.T.P.N.N.T., 2021. National Toxicology Program. 15th Report on Carcinogens.
  • [18] Carpenter, E.J., et al., 1972. Polystyrene Spherules in Coastal Waters. Science, Cilt. 178(4062), s. 749-750.
  • [19] Tsakona, M., Rucevska, I., 2020. Baseline Report on Plastic Waste: Basel Convention. United Nations, s. 1–68.
  • [20] Yang, L., Park, D., Qin, Z., 2021. Material Function of Mycelium-Based Bio-Composite: A Review. Frontiers in Materials, Cilt. 8.
  • [21] Elsacker, E., et al., 2020. A Comprehensive Framework for the Production of Mycelium-Based Lignocellulosic Composites. Science of the Total Environment, Cilt. 725, s. 138431
  • [22] TÜİK, 2022. Bitkisel Üretim İstatistikleri, 2022. TÜİK.
  • [23] Mengeloğlu, F., Alma, M.H., 2002. Buğday Saplarının Kompozit Levha Üretiminde Kullanılması. KSÜ Fen ve Mühendislik Dergisi, Cilt. 5(2), s. 37-48.
  • [24] Yang, W., Guo, F., Wan, Z., 2013. Yield and Size of Oyster Mushroom Grown on Rice/Wheat Straw Basal Substrate Supplemented with Cotton Seed Hull. Saudi Journal of Biological Sciences, Cilt. 20(4), s. 333-338.
  • [25] Jose, J., et al., 2021. Investigations into the Development of a Mycelium Biocomposite to Substitute Polystyrene in Packaging Applications. Arabian Journal for Science and Engineering, Cilt. 46(3), s. 2975-2984.
  • [26] Vârban, R., et al., 2021. Comparative FT-IR Prospecting for Cellulose in Stems of Some Fiber Plants: Flax, Velvet Leaf, Hemp and Jute. Applied Sciences, Cilt. 11(18), s. 8570.
  • [27] Precious, E.O., 2019. Design and Testing of Mycelium Biocomposite. African University of Science and Technology, Materials Science and Engineering, Doktora Tezi.
  • [28] Iordache, O.G., et al., 2018. Novel Myco-Composite Material Obtained with Fusarium Oxysporum.
  • [29] Ghazvinian, A., et al., 2019. Mycelium-Based Bio-Composites for Architecture: Assessing the Effects of Cultivation Factors on Compressive Strength. 37 Education and Research in Computer Aided Architectural Design in Europe and XXIII Iberoamerican Society of Digital Graphics, Joint Conference. Blucher Design Proceedings, s. 505-514.
  • [30] Gou, L., et al., 2021. Morphological and Physico-Mechanical Properties of Mycelium Biocomposites with Natural Reinforcement Particles. Construction and Building Materials, Cilt. 304, s. 124656.
  • [31] Răut, I., et al., 2021. Fungal-Based Biopolymer Composites for Construction Materials. Materials, Cilt. 14(11), s. 2906.
  • [32] Buntsma, J., 2019. An Exploration on Cellulose and Weed Residues from Biomass to Mycelium Composite. Stowa, Amersfoort, Netherlands.
  • [33] Jones, M., et al., 2018. Waste-Derived Low-Cost Mycelium Composite Construction Materials with Improved Fire Safety. Fire and Materials, Cilt. 42(7), s. 816-825.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Materials Science and Technologies, Polymer Science and Technologies, Composite and Hybrid Materials, Material Characterization, Polymer Technologies, Polymers and Plastics
Journal Section Research Article
Authors

Merve Mocan 0000-0001-6192-0941

Rukiye Akış 0009-0004-8000-6732

Nurseda Akgürsu 0000-0001-6963-3656

İlayda Albayrak 0009-0000-7967-7660

Early Pub Date January 15, 2025
Publication Date January 23, 2025
Submission Date January 11, 2024
Acceptance Date May 20, 2024
Published in Issue Year 2025

Cite

APA Mocan, M., Akış, R., Akgürsu, N., Albayrak, İ. (2025). Buğday Samanı ve Kenevir Lifi ile Üretilen Miselyum Biyokompozitleri. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 27(79), 110-120. https://doi.org/10.21205/deufmd.2025277914
AMA Mocan M, Akış R, Akgürsu N, Albayrak İ. Buğday Samanı ve Kenevir Lifi ile Üretilen Miselyum Biyokompozitleri. DEUFMD. January 2025;27(79):110-120. doi:10.21205/deufmd.2025277914
Chicago Mocan, Merve, Rukiye Akış, Nurseda Akgürsu, and İlayda Albayrak. “Buğday Samanı Ve Kenevir Lifi Ile Üretilen Miselyum Biyokompozitleri”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 27, no. 79 (January 2025): 110-20. https://doi.org/10.21205/deufmd.2025277914.
EndNote Mocan M, Akış R, Akgürsu N, Albayrak İ (January 1, 2025) Buğday Samanı ve Kenevir Lifi ile Üretilen Miselyum Biyokompozitleri. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27 79 110–120.
IEEE M. Mocan, R. Akış, N. Akgürsu, and İ. Albayrak, “Buğday Samanı ve Kenevir Lifi ile Üretilen Miselyum Biyokompozitleri”, DEUFMD, vol. 27, no. 79, pp. 110–120, 2025, doi: 10.21205/deufmd.2025277914.
ISNAD Mocan, Merve et al. “Buğday Samanı Ve Kenevir Lifi Ile Üretilen Miselyum Biyokompozitleri”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 27/79 (January 2025), 110-120. https://doi.org/10.21205/deufmd.2025277914.
JAMA Mocan M, Akış R, Akgürsu N, Albayrak İ. Buğday Samanı ve Kenevir Lifi ile Üretilen Miselyum Biyokompozitleri. DEUFMD. 2025;27:110–120.
MLA Mocan, Merve et al. “Buğday Samanı Ve Kenevir Lifi Ile Üretilen Miselyum Biyokompozitleri”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 27, no. 79, 2025, pp. 110-2, doi:10.21205/deufmd.2025277914.
Vancouver Mocan M, Akış R, Akgürsu N, Albayrak İ. Buğday Samanı ve Kenevir Lifi ile Üretilen Miselyum Biyokompozitleri. DEUFMD. 2025;27(79):110-2.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.