Research Article
BibTex RIS Cite

Microgrid stability analysis for faults

Year 2024, , 128 - 145, 31.07.2024
https://doi.org/10.56723/dyad.1404438

Abstract

The expansion of dispersed production units powered by renewable energy sources and the liberalization of energy market technologies are both outcomes of today's surging energy usage. With the use of microgrids (MGs), decentralized and localized power generation in this energy environment can be linked to a vast and centralized grid. Reliability of MGs in conventional power systems is a major concern when energy generation units are wind turbines and solar systems, which are renewable energy sources. An essential condition for MGs to function optimally is to provide consumers with voltage that is both of high quality and stable frequency. This is a concern for distribution network operators to consumers and end users. Every MG sector faces the same problem: the power produced does not match the power demanded. Maintaining a voltage and frequency within specified ranges relative to adjustment point values is the goal of voltage and frequency control, which also involves adjusting the consumption or production of reactive and active forces. Maintaining standard power quality and operating the MGs at stable voltage and frequency values are of the utmost importance. Maintaining these parameters in MGs requires careful regulation of voltage and frequency. This article's goal is to help spot processing issues brought on by voltage dips and spikes in the MG system as a result of the MG. Research into the stability-altering impacts of MG energy storage technologies is ongoing as well. All simulations were performed within the MATLAB/SIMULINK software suite.

References

  • [1] Olivares DE, Mehrizi-Sani A, Etemadi AH, Canizares CA, Iravani R. “Trends in microgrid control”. IEEE Trans. Smart Grid, 5(4), 1905-1919, 2014.
  • [2] Ilic-Spong M, Christensen J and Eichorn KL. “Secondary voltage control using pilot point information”. IEEE Trans. PowerSyst, 3(2), 660 -668, 1988.
  • [3] Dağ O, Mirafzal B. “On Stability of Islanded Low-Inertia Microgrids”. Clemson University Power Systems Conference (PSC), Clemson, SC, USA, 08-11 March 2016.
  • [4] Lasseter RH. “Microgrids”. IEEE Power Eng. Soc. Winter Meeting, New York, NY, USA, 27-31 January 2002.
  • [5] Tsikalakis AG and Hatziargyriou ND. “Centralized control for optimizing microgrids operation”. IEEE Trans. Energy Convers, 23(1), 241-248, 2008.
  • [6] Vasilaskis A, Zaferiratou I, Lagos DT, Hatziargyriou ND, “The Evolution of Research in Microgrids Control”. IEEE Open Access Journal of Power and Energy, 7, 331-343, 2020.
  • [7] Blaabjerg F, Teodorescu R, Liserre M and Timbus AV. “Overview of control and grid synchronization for distributed power generation systems”. IEEE Trans. Ind. Electron, 53(5), 1398-1409, 2006.
  • [8] Enjeti PN, Ziogas PD, Lindsay F. “Programmed PWM techniques to eliminate harmonics: a critical evaluation”. IEEE Trans. Ind. Appl, 26(2), 302-316, 1990.
  • [9] Mahrous EA, Rahim NA, Hew WP. “Three phase three level voltage source inverter with low switching frequency based on the two level inverter topology”. IET Electr. Power Appl, 1(4), 637-641, 2007.
  • [10] Liang TJ, O’Connell RM, Hoft RG. “Inverter harmonic reduction using Walsh function harmonic elimination method”. IEEE Trans. Power Electron, 12(6), 971-982, 1997.
  • [11] Taufiq JA, Mellitt B, Goodman CJ. “Novel algorithm for generating near optimal PWM waveforms for AC traction drives”. IEE Proceedings B (Electric Power Applications), 133(2), 85-94, 1986.
  • [12] Trzynadlowski AM, Legowski S. “Application of neural networks to the optimal control of three phase voltage controlled inverters”. IEEE Trans. Power Electron, 9(4), 397-404, 1994.
  • [13] Salam Z. “An online harmonics elimination PWM scheme for three-phase voltage source inverter using quadratic curve fitting”. 30th Annual Conference of IEEE Industrial Electronics Society, Busan, Korea (South), 02-06 November 2004.
  • [14] Maswood AI, Wei S, Rahman MA. “A flexible way to generate PWM-SHE switching patterns using genetic algorithm”. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 04-08 March 2001.
  • [15] Ray RN, Chatterjee, Goswami SK. “Reduction of voltage harmonic using optimisation-based combined approach”. IET Power Electronics, 3(3), 334-344, 2008.
  • [16] Kundur P, Paserba J, Ajjarapu V, Andersson G, Bose A, Canizares C, et al. “Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions”. IEEE Transactions on Power Systems, 19, 3, 1387-401, 2004.
  • [17] Farooq H, Zhou C and Farrag ME. “Analyzing the harmonic distortion in a distribution system caused by the non-linear residential loads”. International Journal of Smart Grid and Clean Energy, 2(1), 46-51, 2012.
  • [18] Sadeque F, Gursoy M, Mirafzal B. “Survey of Control Methods for Grid-Forming Inverters – Advancements from 2020 to 2023”. 2023 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA, 27-28 April 2023.
  • [19] Katiraei F, Iravani MR, Lehn PW, “Micro-grid autonomous operation during and subsequent to islanding process” IEEE Trans. Power Delivery, 1, 248-257, 2005.
  • [20] Tang X, Deng W, Qi Z. “Research on Micro-Grid Voltage Stability Control Based on Supercapacitors Energy Storage”. 2009 International Conference on Electrical Machines and Systems, Tokyo, Japan, 15-18 November 2009.
  • [21] Eren S, Pahlevani M, Knight AM. “Digital Real-Time Harmonic Estimator for Power Converters in Future Micro-Grids”. IEEE Transactions on Smart Grid, 9(6), 6398-6407, 2018.
  • [22] Melo FC, vd. “Harmonic Distortion Analysis in a Low Voltage Grid-Connected Photovoltaic System”. IEEE Latin America Transactions, 13(1), 136-142, 2015.
  • [23] Jain S. Power quality: An introduction. Editörler: Dwivedi SK, Jain S, Gupta KK, Chaturvedi P. Modeling and Control of Power Electronics Converter System for Power Quality Improvement, 1-29, New York, USA, Academic Press, 2018.
  • [24] Saeed MH, Fangzong W, Kalwar BA, Iqbal S. “A Review on Microgrids’ Challenges & Perspectives”. IEEE Access, 9, 166502-166517, 2021.
  • [25] Micallef A, Apap M, Spiteri-Staines C and Guerrero JM. “Mitigation of harmonics in grid-connected and islanded microgrids via virtual admintances and impedances”. IEEE Trans. Smart Grid, 8(2), 651-661, 2017.
  • [26] Naz MN, Mushtaq MI, Naeem M, Iqbal M, Altaf MW, Haneef M. “Multicriteria decision making for resource management in renewable energy assisted microgrids”. Renew. Sustain. Energy Rev, 71, 323-341, 2017.
  • [27] Neagu BC, Grigora G, Ivanov O. “An Efficient Peer-to-Peer Based Blockchain Approach for Prosumers Energy Trading in Microgrids”. 8th International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, 21-23 May 2019.
  • [28] Mohanty SR, Kishor N, Ray PK, Catalao JPS. “Comparative Study of Advanced Signal Processing Techniques for Islanding detection in a Hybrid Distributed Generation System”. IEEE Transactions on sustainable Energy, 6, 122-131, 2015.
  • [29] Batrinu F, Carpaneto E, Chicco G, De Donno M, Napoli R, Porumb R, et al. “New Nested Evolutionary Programming Approach for Voltage Control Optimization with Distributed Generation”. 12th IEEE Mediterranean Electrotechnical Conference Conference, Dubrovnik, Croatia, 2-15 May 2004.
  • [30] Boonchiam P, Mithulananthan N. “Understanding of Dynamic Voltage Restorers through MATLAB Simulation”. Thammasat Int. J. Sc. Tech, 11(3), 1-6, 2006.
  • [31] IEEE. “1159-1995 - IEEE Recommended Practice for Monitoring Electric Power Quality”. IEEE, 1995, 1995.
  • [32] Ghosh A, Ledwich G. Power Quality Enhancement Using Custom Power Devices. Kluwer Academic Publishers, 2002.
  • [33] Zamora R, Srivastava AK. “Controls for microgrids with storage: Review, challenges, and research needs”. Renew. Sustain. Energy Rev, 14(7), 2009-2018, 2010.
  • [34] Rath SS, Panda G, Ray PK, Mohanty A. “A comprehensive review on microgrid protection: Issues and challenges”. 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, Shillong, Meghalaya, India, 05-07 March 2021.
  • [35] Karimi MH, Taher SA, Arani ZD, Guerrero JM. “Imbalance power sharing improvement in autonomous microgrids consisting of gridfeeding and grid-supporting inverters”. 7th Iran Wind Energy Conf., Shahrood, Iran, 17-18 May 2021.
  • [36] IEEE. “519-2014 - IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems”. IEEE, 2014.
  • [37] IEEE. “1159-2009 - IEEE Recommended Practice for Monitoring Electric Power Quality”. IEEE, 2009.
  • [38] Sinvula R, Abo-Al-Ez KM, Kahn MT. “Total Harmonics Distortion (THD) with PV System Integration in Smart Grids: Case Study”. 2019 International Conference on the Domestic Use of Energy, Wellington, South Africa, 25-27 March 2019.
  • [39] Alhamrouni I, Wahab W, Salem M, Rahman NHA, Awalin L. “Modeling of Micro-grid with the consideration of total harmonic distortion analysis”. Indonesian Journal of Electrical Engineering and Computer Science, 15(2), 581-592, 2019.
  • [40] Kocatepe C, Uzunoğlu M, Yumurtacı R, Karakaş A, Arıkan O. Elektrik Tesislerinde Harmonikler. İstanbul, Türkiye, Birsen Yayınevi, 2003.
  • [41] ABB. “Technical Application Papers No.8 Power factor correction and harmonic filtering in electrical plants”. https://library.e.abb.com/public/4704e67320c08992c1257870002e4700/1SDC007107G0202.pdf (09.06.2016).
  • [42] MathWorks. “Systems-Level Microgrid Simulation from Simple One-Line Diagram”. www.mathworks.com/matlabcentral/fileexchange/67060-systems-level-microgrid-simulation-from-simple-one-line-diagram (09.06.2016).

Mikro şebekelerde arıza durumunda kararlılık analizi

Year 2024, , 128 - 145, 31.07.2024
https://doi.org/10.56723/dyad.1404438

Abstract

Günümüzde enerji tüketiminin artması, enerji piyasasındaki serbestlik ve teknolojinin gelişmesi yenilenebilir enerji kaynaklarına sahip dağıtık üretim kaynaklarının artışına sebep olmaktadır. Mikroşebekeler (MG), bu enerji ortamında yerel ve merkezi olmayan enerji üretimini, büyük ve merkezi bir şebekeye bağlanmasını sağlamaktadır. Rüzgar türbinleri ve fotovoltaik sistemler gibi yenilenebilir enerji kaynakları, enerji üretim birimleri olarak kullanıldığında, MG’lerin geleneksel güç sistemlerinde güvenilir çalışması büyük bir endişeye sebep olmaktadır. Tüketicileri besleyen gerilimin yüksek kalitesi ve frekans kararlılığının güvencesi, MG’lerin optimum şekilde çalışması için birinci derece bir taleptir. Bu durum hem dağıtım şebekesi operatörleri hem de son tüketiciler için kalıcı bir endişe kaynağıdır. Üretilen gücün talep edilen güce eşit olmaması, her MG sektörünün sorunudur. Gerilim ve frekans kontrolü, üretilen veya tüketilen aktif ve reaktif güçleri ayarlayarak hem gerilimin hem de frekansın ayar noktası değerleri etrafında önceden belirlenen sınırlar içinde kalmasını sağlamaktır. MG’lerin kararlı gerilim ve frekans değerler ile çalıştırlması ve güç kalitesinin normlara uygun olması temel gereksinimlerdendir. Bu normların sağlanması için, MG’lerde gerilim ve frekans kontrolü önem arz etmektedir. Bu makalenin amacı MG sistemin şebeke kaynaklı gerilim düşüşlerinin ve yükselişlerinin, adalanma sırasında meydana getirdiği sinyalizasyon hatalarını ortaya çıkarmaktır. Ayrıca MG’lerde bulunan enerji depolama sistemlerinin kararlılık üzerine etkileri de incelenmektedir. Tüm benzetimler MATLAB/SIMULINK ortamında yapılmıştır.

References

  • [1] Olivares DE, Mehrizi-Sani A, Etemadi AH, Canizares CA, Iravani R. “Trends in microgrid control”. IEEE Trans. Smart Grid, 5(4), 1905-1919, 2014.
  • [2] Ilic-Spong M, Christensen J and Eichorn KL. “Secondary voltage control using pilot point information”. IEEE Trans. PowerSyst, 3(2), 660 -668, 1988.
  • [3] Dağ O, Mirafzal B. “On Stability of Islanded Low-Inertia Microgrids”. Clemson University Power Systems Conference (PSC), Clemson, SC, USA, 08-11 March 2016.
  • [4] Lasseter RH. “Microgrids”. IEEE Power Eng. Soc. Winter Meeting, New York, NY, USA, 27-31 January 2002.
  • [5] Tsikalakis AG and Hatziargyriou ND. “Centralized control for optimizing microgrids operation”. IEEE Trans. Energy Convers, 23(1), 241-248, 2008.
  • [6] Vasilaskis A, Zaferiratou I, Lagos DT, Hatziargyriou ND, “The Evolution of Research in Microgrids Control”. IEEE Open Access Journal of Power and Energy, 7, 331-343, 2020.
  • [7] Blaabjerg F, Teodorescu R, Liserre M and Timbus AV. “Overview of control and grid synchronization for distributed power generation systems”. IEEE Trans. Ind. Electron, 53(5), 1398-1409, 2006.
  • [8] Enjeti PN, Ziogas PD, Lindsay F. “Programmed PWM techniques to eliminate harmonics: a critical evaluation”. IEEE Trans. Ind. Appl, 26(2), 302-316, 1990.
  • [9] Mahrous EA, Rahim NA, Hew WP. “Three phase three level voltage source inverter with low switching frequency based on the two level inverter topology”. IET Electr. Power Appl, 1(4), 637-641, 2007.
  • [10] Liang TJ, O’Connell RM, Hoft RG. “Inverter harmonic reduction using Walsh function harmonic elimination method”. IEEE Trans. Power Electron, 12(6), 971-982, 1997.
  • [11] Taufiq JA, Mellitt B, Goodman CJ. “Novel algorithm for generating near optimal PWM waveforms for AC traction drives”. IEE Proceedings B (Electric Power Applications), 133(2), 85-94, 1986.
  • [12] Trzynadlowski AM, Legowski S. “Application of neural networks to the optimal control of three phase voltage controlled inverters”. IEEE Trans. Power Electron, 9(4), 397-404, 1994.
  • [13] Salam Z. “An online harmonics elimination PWM scheme for three-phase voltage source inverter using quadratic curve fitting”. 30th Annual Conference of IEEE Industrial Electronics Society, Busan, Korea (South), 02-06 November 2004.
  • [14] Maswood AI, Wei S, Rahman MA. “A flexible way to generate PWM-SHE switching patterns using genetic algorithm”. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 04-08 March 2001.
  • [15] Ray RN, Chatterjee, Goswami SK. “Reduction of voltage harmonic using optimisation-based combined approach”. IET Power Electronics, 3(3), 334-344, 2008.
  • [16] Kundur P, Paserba J, Ajjarapu V, Andersson G, Bose A, Canizares C, et al. “Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions”. IEEE Transactions on Power Systems, 19, 3, 1387-401, 2004.
  • [17] Farooq H, Zhou C and Farrag ME. “Analyzing the harmonic distortion in a distribution system caused by the non-linear residential loads”. International Journal of Smart Grid and Clean Energy, 2(1), 46-51, 2012.
  • [18] Sadeque F, Gursoy M, Mirafzal B. “Survey of Control Methods for Grid-Forming Inverters – Advancements from 2020 to 2023”. 2023 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA, 27-28 April 2023.
  • [19] Katiraei F, Iravani MR, Lehn PW, “Micro-grid autonomous operation during and subsequent to islanding process” IEEE Trans. Power Delivery, 1, 248-257, 2005.
  • [20] Tang X, Deng W, Qi Z. “Research on Micro-Grid Voltage Stability Control Based on Supercapacitors Energy Storage”. 2009 International Conference on Electrical Machines and Systems, Tokyo, Japan, 15-18 November 2009.
  • [21] Eren S, Pahlevani M, Knight AM. “Digital Real-Time Harmonic Estimator for Power Converters in Future Micro-Grids”. IEEE Transactions on Smart Grid, 9(6), 6398-6407, 2018.
  • [22] Melo FC, vd. “Harmonic Distortion Analysis in a Low Voltage Grid-Connected Photovoltaic System”. IEEE Latin America Transactions, 13(1), 136-142, 2015.
  • [23] Jain S. Power quality: An introduction. Editörler: Dwivedi SK, Jain S, Gupta KK, Chaturvedi P. Modeling and Control of Power Electronics Converter System for Power Quality Improvement, 1-29, New York, USA, Academic Press, 2018.
  • [24] Saeed MH, Fangzong W, Kalwar BA, Iqbal S. “A Review on Microgrids’ Challenges & Perspectives”. IEEE Access, 9, 166502-166517, 2021.
  • [25] Micallef A, Apap M, Spiteri-Staines C and Guerrero JM. “Mitigation of harmonics in grid-connected and islanded microgrids via virtual admintances and impedances”. IEEE Trans. Smart Grid, 8(2), 651-661, 2017.
  • [26] Naz MN, Mushtaq MI, Naeem M, Iqbal M, Altaf MW, Haneef M. “Multicriteria decision making for resource management in renewable energy assisted microgrids”. Renew. Sustain. Energy Rev, 71, 323-341, 2017.
  • [27] Neagu BC, Grigora G, Ivanov O. “An Efficient Peer-to-Peer Based Blockchain Approach for Prosumers Energy Trading in Microgrids”. 8th International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, 21-23 May 2019.
  • [28] Mohanty SR, Kishor N, Ray PK, Catalao JPS. “Comparative Study of Advanced Signal Processing Techniques for Islanding detection in a Hybrid Distributed Generation System”. IEEE Transactions on sustainable Energy, 6, 122-131, 2015.
  • [29] Batrinu F, Carpaneto E, Chicco G, De Donno M, Napoli R, Porumb R, et al. “New Nested Evolutionary Programming Approach for Voltage Control Optimization with Distributed Generation”. 12th IEEE Mediterranean Electrotechnical Conference Conference, Dubrovnik, Croatia, 2-15 May 2004.
  • [30] Boonchiam P, Mithulananthan N. “Understanding of Dynamic Voltage Restorers through MATLAB Simulation”. Thammasat Int. J. Sc. Tech, 11(3), 1-6, 2006.
  • [31] IEEE. “1159-1995 - IEEE Recommended Practice for Monitoring Electric Power Quality”. IEEE, 1995, 1995.
  • [32] Ghosh A, Ledwich G. Power Quality Enhancement Using Custom Power Devices. Kluwer Academic Publishers, 2002.
  • [33] Zamora R, Srivastava AK. “Controls for microgrids with storage: Review, challenges, and research needs”. Renew. Sustain. Energy Rev, 14(7), 2009-2018, 2010.
  • [34] Rath SS, Panda G, Ray PK, Mohanty A. “A comprehensive review on microgrid protection: Issues and challenges”. 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, Shillong, Meghalaya, India, 05-07 March 2021.
  • [35] Karimi MH, Taher SA, Arani ZD, Guerrero JM. “Imbalance power sharing improvement in autonomous microgrids consisting of gridfeeding and grid-supporting inverters”. 7th Iran Wind Energy Conf., Shahrood, Iran, 17-18 May 2021.
  • [36] IEEE. “519-2014 - IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems”. IEEE, 2014.
  • [37] IEEE. “1159-2009 - IEEE Recommended Practice for Monitoring Electric Power Quality”. IEEE, 2009.
  • [38] Sinvula R, Abo-Al-Ez KM, Kahn MT. “Total Harmonics Distortion (THD) with PV System Integration in Smart Grids: Case Study”. 2019 International Conference on the Domestic Use of Energy, Wellington, South Africa, 25-27 March 2019.
  • [39] Alhamrouni I, Wahab W, Salem M, Rahman NHA, Awalin L. “Modeling of Micro-grid with the consideration of total harmonic distortion analysis”. Indonesian Journal of Electrical Engineering and Computer Science, 15(2), 581-592, 2019.
  • [40] Kocatepe C, Uzunoğlu M, Yumurtacı R, Karakaş A, Arıkan O. Elektrik Tesislerinde Harmonikler. İstanbul, Türkiye, Birsen Yayınevi, 2003.
  • [41] ABB. “Technical Application Papers No.8 Power factor correction and harmonic filtering in electrical plants”. https://library.e.abb.com/public/4704e67320c08992c1257870002e4700/1SDC007107G0202.pdf (09.06.2016).
  • [42] MathWorks. “Systems-Level Microgrid Simulation from Simple One-Line Diagram”. www.mathworks.com/matlabcentral/fileexchange/67060-systems-level-microgrid-simulation-from-simple-one-line-diagram (09.06.2016).
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering (Other)
Journal Section Research Articles
Authors

Abdurrahman Berke Ülger 0000-0003-3261-4368

Oben Dağ 0000-0001-8590-7100

Publication Date July 31, 2024
Submission Date December 14, 2023
Acceptance Date January 29, 2024
Published in Issue Year 2024

Cite

APA Ülger, A. B., & Dağ, O. (2024). Mikro şebekelerde arıza durumunda kararlılık analizi. Disiplinlerarası Yenilik Araştırmaları Dergisi, 4(2), 128-145. https://doi.org/10.56723/dyad.1404438
AMA Ülger AB, Dağ O. Mikro şebekelerde arıza durumunda kararlılık analizi. Disiplinlerarası Yenilik Araştırmaları Dergisi. July 2024;4(2):128-145. doi:10.56723/dyad.1404438
Chicago Ülger, Abdurrahman Berke, and Oben Dağ. “Mikro şebekelerde arıza Durumunda kararlılık Analizi”. Disiplinlerarası Yenilik Araştırmaları Dergisi 4, no. 2 (July 2024): 128-45. https://doi.org/10.56723/dyad.1404438.
EndNote Ülger AB, Dağ O (July 1, 2024) Mikro şebekelerde arıza durumunda kararlılık analizi. Disiplinlerarası Yenilik Araştırmaları Dergisi 4 2 128–145.
IEEE A. B. Ülger and O. Dağ, “Mikro şebekelerde arıza durumunda kararlılık analizi”, Disiplinlerarası Yenilik Araştırmaları Dergisi, vol. 4, no. 2, pp. 128–145, 2024, doi: 10.56723/dyad.1404438.
ISNAD Ülger, Abdurrahman Berke - Dağ, Oben. “Mikro şebekelerde arıza Durumunda kararlılık Analizi”. Disiplinlerarası Yenilik Araştırmaları Dergisi 4/2 (July 2024), 128-145. https://doi.org/10.56723/dyad.1404438.
JAMA Ülger AB, Dağ O. Mikro şebekelerde arıza durumunda kararlılık analizi. Disiplinlerarası Yenilik Araştırmaları Dergisi. 2024;4:128–145.
MLA Ülger, Abdurrahman Berke and Oben Dağ. “Mikro şebekelerde arıza Durumunda kararlılık Analizi”. Disiplinlerarası Yenilik Araştırmaları Dergisi, vol. 4, no. 2, 2024, pp. 128-45, doi:10.56723/dyad.1404438.
Vancouver Ülger AB, Dağ O. Mikro şebekelerde arıza durumunda kararlılık analizi. Disiplinlerarası Yenilik Araştırmaları Dergisi. 2024;4(2):128-45.