Year 2020,
Volume: 7 Issue: 3, 1063 - 1073, 30.09.2020
Mehmet Subaşı
,
Oguz Yılmaz
Kamran Samet
,
Asghar Safarian
,
Çetin Karataş
Supporting Institution
Gazi University Research Funds
Project Number
07/2013-03
References
- 1. Karataş Ç., Sarıtaş S., "Powder Injection Molding: A High Technology Manufacturing Process", Journal of Faculty of Engineering and Architecture of Gazi University, 1998,13 (2): 193.
- 2. Heaney D.F., "Handbook of Metal Injection Molding", Elsevier, (2012).
- 3. German R.M., Bose A., "Injection Molding of Metals and Ceramics", Metal Powder Industries Federation, (1997).
- 4. Sotomayor M., Várez A., Levenfeld B., " Influence of Powder Particle Size Distribution on Rheological Properties of 316L Powder Injection Moulding Feedstocks", Powder Technology, 2010, 20 (1): 30-36.
- 5. German R.M., "Powder Metallurgy Particule Materials Processing", Metal Powder Industries Federation, New Jersey, (2007).
- 6. Safarian A., Karataş Ç., "Diffusion Welding of Thick Components Fabricated by Inserted Powder Injection Molding", Materials Testing, 2014, 56 (10): 842-846.
- 7. Luo T., Qu X., Qin M., Ouyang M., "Dimension Precision of Metal Injection Molded Pure Tungsten", International Journal of Refractory Metals and Hard Materials, 2009, 27 (3): 615-620.
- 8. Kong X., Barriere T., Gelin J., "Determination of Critical and Optimal Powder Loadings for 316L Fine Stainless Steel Feedstocks for Micro-Powder Injection Molding", Journal of Materials Processing Technology, 2012, 212 (11): 2173-2182.
- 9. Shongwe M., Ramakokovhu M., Diouf S., Durowoju M., Obadele B., Sule R., Lethabane M., Olubambi P., "Effect of Starting Powder Particle Size and Heating Rate on Spark Plasma Sintering of Fe Ni Alloys", Journal of Alloys and Compounds, 2016, 678: 241-248.
- 10. Yeh T.S., Sacks M.D., "Effect of Particle Size Distribution on The Sintering of Alumina", Journal of the American Ceramic Society, 1988, 71 (12): 484-487.
- 11. Reed R.D., Marks R.J., "Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks", Mit Press, (1998).
- 12. Ramana K., Anita T., Mandal S., Kaliappan S., Shaikh H., Sivaprasad P., Dayal R., Khatak H., "Effect of Different Environmental Parameters on Pitting Behavior of AISI Type 316L Stainless Steel: Experimental Studies and Neural Network Modeling", Materials & Design, 2009, 30 (9): 3770-3775.
- 13. Kara F., Aslantaş K., Çiçek A., "Prediction of Cutting Temperature in Orthogonal Machining of AISI 316L Using Artificial Neural Network", Applied Soft Computing, 2016, 38: 64-74.
- 14. Karataş Ç., Sözen A., Arcaklioglu E., Erguney S., "Investigation of Mouldability for Feedstocks Used Powder Injection Moulding", Materials & Design, 2008, 29 (9): 1713-1724.
- 15. Cochocki A., Unbehauen R., Neural Networks for Optimization and Signal Processing. John Wiley & Sons, Inc., (1993).
- 16. Afrand M., Najafabadi K.N., Sina N., Safaei M.R., Kherbeet A.S., Wongwises S., Dahari M., "Prediction of Dynamic Viscosity of a Hybrid Nano-Lubricant by An Optimal Artificial Neural Network", International Communications in Heat and Mass Transfer, 2016, 76: 209-214.
- 17. Efe M.Ö., Kaynak O., "Yapay Sinir Ağları ve Uygulamaları", Boğaziçi Üniversitesi, (2004).
- 18. Fırat M., Güngör M., "Askı Madde Konsantrasyonu ve Miktarının Yapay Sinir Ağları ile Belirlenmesi", Teknik Dergi, 2004, 15 (73): 3267-3282.
- 19. Esfe M.H., Ahangar M.R.H., Rejvani M., Toghraie D., Hajmohammad M.H., "Designing an Artificial Neural Network to Predict Dynamic Viscosity of Aqueous Nanofluid of TiO2 Using Experimental Data", International Communications in Heat and Mass Transfer, 2016, 75: 192-196.
- 20. Quinard C., Song J., Barriere T., Gelin J., "Elaboration of PIM Feedstocks With 316L Fine Stainless Steel Powders for The Processing of Micro-Components", Powder Technology, 2011, 208 (2): 383-389.
- 21. Abolhasani H., Muhamad N., "A New Starch-Based Binder for Metal Injection Molding", Journal of Materials Processing Technology, 2010, 210 (6): 961-968.
- 22. Safariangharasaghal A., "Toz Enjeksiyon Kalıplama Yönteminde Insört Kullanarak Büyük Hacimli Parçaların Üretiminin Araştırılması", Ph. D., Gazi University, Ankara, (2015).
- 23. Liu L., Loh N., Tay B., Tor S., Yin H., Qu X., "Preparation and Characterization of Micro Components Fabricated by Micro Powder Injection Molding", Materials Characterization, 2011, 62 (6): 615-620.
- 24. Raza M.R., Ahmad F., Omar M., German R., "Effects of Cooling Rate on Mechanical Properties and Corrosion Resistance of Vacuum Sintered Powder Injection Molded 316L Stainless Steel", Journal of Materials Processing Technology, 2012, 212 (1): 164-170.
- 25. Koseski R.P., Suri P., Earhardt N.B., German R.M., Kwon Y-S., "Microstructural Evolution of Injection Molded Gas-And Water-Atomized 316L Stainless Steel Powder During Sintering", Materials Science and Engineering: A, 2005, 390 (1): 171-177.
- 26. Liu Z., Loh N., Khor K., Tor S., "Sintering Activation Energy of Powder Injection Molded 316L Stainless Steel", Scripta Materialia, 2001, 44 (7): 1131-1137.
- 27. Imbaby M., Jiang K., "Micro Fabrication of Stainless Steel Micro Components Using Soft Moulding And Aqueous Slurry", Microelectronic Engineering, 2010, 87 (1): 72-78.
- 28. Imgrund P., Rota A., Simchi A., "Microinjection Moulding of 316L/17-4PH and 316L/Fe Powders for Fabrication of Magnetic–Nonmagnetic Bimetals", Journal of materials processing technology, 2008, 200 (1): 259-264.
- 29. Heaney D., Suri P., German R., "Defect-free Sintering of Two Material Powder Injection Molded Components Part I Experimental Investigations", Journal of Materials Science, 2003, 38 (24): 4869-4874.
- 30. Quinard C., Barriere T., Gelin J., "Development and Property Identification of 316L Stainless Steel Feedstock for PIM and µPIM", Powder Technology, 2009, 190 (1): 123-128.
- 31. Annicchiarico D., Alcock J.R., "Review of Factors That Affect Shrinkage of Molded Part In Injection Molding", Materials and Manufacturing Processes, 2014, 29 (6): 662-682.
- 32. Zauner R., Heaney D., Piemme J., Binet C., German R.M., "The Effect of Powder Type and Powder Size on Dimensional Variability in PIM", Advances in Powder Metallurgy and Particulate Materials, 2002, 10(10): 100-191.
- 33. Sanad M., Rashad M., Abdel-Aal E., El-Shahat M., "Mechanical, Morphological and Dielectric Properties of Sintered Mullite Ceramics at Two Different Heating Rates Prepared From Alkaline Monophasic Salts", Ceramics International, 2013, 39 (2): 1547-1554.
Toz Enjeksiyon Kalıplamada 316 L Besleme Stokunun Çekme Yüzdesinin Yapay Sinir Ağları İle Tahmin Edilmesi
Year 2020,
Volume: 7 Issue: 3, 1063 - 1073, 30.09.2020
Mehmet Subaşı
,
Oguz Yılmaz
Kamran Samet
,
Asghar Safarian
,
Çetin Karataş
Abstract
Toz enjeksiyon kalıplama, bazı engelleri aşmak için (geometrik tasarım, çok adımlı üretim süreci vb.) kullanılabilecek bir üretim yöntemidir. Toz enjeksiyon kalıplamada çekme, doğrusal boyutlarda küçülme olarak tanımlanır. Sinterlemenin ölçümü genelde doğrusal boyuttaki değişimler ile gerçekleşir. Boyutsal değişim, parça boyutundaki değişikliğin başlangıç ham parça boyutuna bölünmesidir. Çekme, sinterleme esnasındaki mikroskopik değişim hızlarının incelenmesi için önemli bir değerdir. Bu çalışmada, 316 L besleme stokunun toz yüzdesi, toz dağılımı (Sw), besleme stokunun d50 çapı ve sinterleme hızı parametrelerine bağlı olarak sinterleme işlemi sonrasındaki parçada oluşacak çekme oranı yüzdesi tespit edilmiştir. Çekme oranı yüzdesi hesaplaması için Matlab programı kullanılmıştır. 316 L besleme stoku için deneysel çekme yüzdeleri, yapay sinir ağı kullanılarak elde edilen sonuçlar ile karşılaştırılmıştır. Çalışma sonucunda 316 L besleme stoku için regresyon analizi yapılarak çekme yüzdesi değeri için matematiksel formül çıkartılmıştır ve toz enjeksiyon kalıplama prosesinde sinterleme yapmadan besleme stokunun toz yüzdesi, toz dağılımı ve d50 oranı ile çekme yüzdesinin hesaplanabileceği sonucuna varılmıştır.
Project Number
07/2013-03
References
- 1. Karataş Ç., Sarıtaş S., "Powder Injection Molding: A High Technology Manufacturing Process", Journal of Faculty of Engineering and Architecture of Gazi University, 1998,13 (2): 193.
- 2. Heaney D.F., "Handbook of Metal Injection Molding", Elsevier, (2012).
- 3. German R.M., Bose A., "Injection Molding of Metals and Ceramics", Metal Powder Industries Federation, (1997).
- 4. Sotomayor M., Várez A., Levenfeld B., " Influence of Powder Particle Size Distribution on Rheological Properties of 316L Powder Injection Moulding Feedstocks", Powder Technology, 2010, 20 (1): 30-36.
- 5. German R.M., "Powder Metallurgy Particule Materials Processing", Metal Powder Industries Federation, New Jersey, (2007).
- 6. Safarian A., Karataş Ç., "Diffusion Welding of Thick Components Fabricated by Inserted Powder Injection Molding", Materials Testing, 2014, 56 (10): 842-846.
- 7. Luo T., Qu X., Qin M., Ouyang M., "Dimension Precision of Metal Injection Molded Pure Tungsten", International Journal of Refractory Metals and Hard Materials, 2009, 27 (3): 615-620.
- 8. Kong X., Barriere T., Gelin J., "Determination of Critical and Optimal Powder Loadings for 316L Fine Stainless Steel Feedstocks for Micro-Powder Injection Molding", Journal of Materials Processing Technology, 2012, 212 (11): 2173-2182.
- 9. Shongwe M., Ramakokovhu M., Diouf S., Durowoju M., Obadele B., Sule R., Lethabane M., Olubambi P., "Effect of Starting Powder Particle Size and Heating Rate on Spark Plasma Sintering of Fe Ni Alloys", Journal of Alloys and Compounds, 2016, 678: 241-248.
- 10. Yeh T.S., Sacks M.D., "Effect of Particle Size Distribution on The Sintering of Alumina", Journal of the American Ceramic Society, 1988, 71 (12): 484-487.
- 11. Reed R.D., Marks R.J., "Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks", Mit Press, (1998).
- 12. Ramana K., Anita T., Mandal S., Kaliappan S., Shaikh H., Sivaprasad P., Dayal R., Khatak H., "Effect of Different Environmental Parameters on Pitting Behavior of AISI Type 316L Stainless Steel: Experimental Studies and Neural Network Modeling", Materials & Design, 2009, 30 (9): 3770-3775.
- 13. Kara F., Aslantaş K., Çiçek A., "Prediction of Cutting Temperature in Orthogonal Machining of AISI 316L Using Artificial Neural Network", Applied Soft Computing, 2016, 38: 64-74.
- 14. Karataş Ç., Sözen A., Arcaklioglu E., Erguney S., "Investigation of Mouldability for Feedstocks Used Powder Injection Moulding", Materials & Design, 2008, 29 (9): 1713-1724.
- 15. Cochocki A., Unbehauen R., Neural Networks for Optimization and Signal Processing. John Wiley & Sons, Inc., (1993).
- 16. Afrand M., Najafabadi K.N., Sina N., Safaei M.R., Kherbeet A.S., Wongwises S., Dahari M., "Prediction of Dynamic Viscosity of a Hybrid Nano-Lubricant by An Optimal Artificial Neural Network", International Communications in Heat and Mass Transfer, 2016, 76: 209-214.
- 17. Efe M.Ö., Kaynak O., "Yapay Sinir Ağları ve Uygulamaları", Boğaziçi Üniversitesi, (2004).
- 18. Fırat M., Güngör M., "Askı Madde Konsantrasyonu ve Miktarının Yapay Sinir Ağları ile Belirlenmesi", Teknik Dergi, 2004, 15 (73): 3267-3282.
- 19. Esfe M.H., Ahangar M.R.H., Rejvani M., Toghraie D., Hajmohammad M.H., "Designing an Artificial Neural Network to Predict Dynamic Viscosity of Aqueous Nanofluid of TiO2 Using Experimental Data", International Communications in Heat and Mass Transfer, 2016, 75: 192-196.
- 20. Quinard C., Song J., Barriere T., Gelin J., "Elaboration of PIM Feedstocks With 316L Fine Stainless Steel Powders for The Processing of Micro-Components", Powder Technology, 2011, 208 (2): 383-389.
- 21. Abolhasani H., Muhamad N., "A New Starch-Based Binder for Metal Injection Molding", Journal of Materials Processing Technology, 2010, 210 (6): 961-968.
- 22. Safariangharasaghal A., "Toz Enjeksiyon Kalıplama Yönteminde Insört Kullanarak Büyük Hacimli Parçaların Üretiminin Araştırılması", Ph. D., Gazi University, Ankara, (2015).
- 23. Liu L., Loh N., Tay B., Tor S., Yin H., Qu X., "Preparation and Characterization of Micro Components Fabricated by Micro Powder Injection Molding", Materials Characterization, 2011, 62 (6): 615-620.
- 24. Raza M.R., Ahmad F., Omar M., German R., "Effects of Cooling Rate on Mechanical Properties and Corrosion Resistance of Vacuum Sintered Powder Injection Molded 316L Stainless Steel", Journal of Materials Processing Technology, 2012, 212 (1): 164-170.
- 25. Koseski R.P., Suri P., Earhardt N.B., German R.M., Kwon Y-S., "Microstructural Evolution of Injection Molded Gas-And Water-Atomized 316L Stainless Steel Powder During Sintering", Materials Science and Engineering: A, 2005, 390 (1): 171-177.
- 26. Liu Z., Loh N., Khor K., Tor S., "Sintering Activation Energy of Powder Injection Molded 316L Stainless Steel", Scripta Materialia, 2001, 44 (7): 1131-1137.
- 27. Imbaby M., Jiang K., "Micro Fabrication of Stainless Steel Micro Components Using Soft Moulding And Aqueous Slurry", Microelectronic Engineering, 2010, 87 (1): 72-78.
- 28. Imgrund P., Rota A., Simchi A., "Microinjection Moulding of 316L/17-4PH and 316L/Fe Powders for Fabrication of Magnetic–Nonmagnetic Bimetals", Journal of materials processing technology, 2008, 200 (1): 259-264.
- 29. Heaney D., Suri P., German R., "Defect-free Sintering of Two Material Powder Injection Molded Components Part I Experimental Investigations", Journal of Materials Science, 2003, 38 (24): 4869-4874.
- 30. Quinard C., Barriere T., Gelin J., "Development and Property Identification of 316L Stainless Steel Feedstock for PIM and µPIM", Powder Technology, 2009, 190 (1): 123-128.
- 31. Annicchiarico D., Alcock J.R., "Review of Factors That Affect Shrinkage of Molded Part In Injection Molding", Materials and Manufacturing Processes, 2014, 29 (6): 662-682.
- 32. Zauner R., Heaney D., Piemme J., Binet C., German R.M., "The Effect of Powder Type and Powder Size on Dimensional Variability in PIM", Advances in Powder Metallurgy and Particulate Materials, 2002, 10(10): 100-191.
- 33. Sanad M., Rashad M., Abdel-Aal E., El-Shahat M., "Mechanical, Morphological and Dielectric Properties of Sintered Mullite Ceramics at Two Different Heating Rates Prepared From Alkaline Monophasic Salts", Ceramics International, 2013, 39 (2): 1547-1554.