Review
BibTex RIS Cite

Meyve ve Sebzelerde Aktif Ambalajlama Teknolojisinin Kullanımı

Year 2021, Issue: 21, 122 - 130, 31.01.2021
https://doi.org/10.31590/ejosat.840317

Abstract

Son yıllarda tüketicilerin daha sağlıklı bir yaşam tarzına ve besleyici değeri yüksek olan gıdalara yönelmeleri nedeniyle taze meyve ve sebzelere olan talep artmaktadır. Fakat taze meyve ve sebzeler hasat sonrasında da canlılıklarını devam ettirmekte olup, solunum ve terleme gibi birçok reaksiyonun hızı ortam koşullarına ve uygulanan hasat sonrası muhafaza metotlarına göre değişmektedir. Taze meyve ve sebzelerde kullanılan hasat sonrası muhafaza metotlarının en önemli amacı; solunum hızını yavaşlatmak ve mikrobiyal bozulmayı geciktirmektir. Fakat hangi metot kullanılarsa kullanılsın, kullanılan ambalajlama teknolojisi ve ambalaj materyalleri taze meyve ve sebzelerde raf ömrünü doğrudan etkilemektedir. Geleneksel ambalajlama teknolojileri; içerme, koruma, iletişim ve kullanım kolaylığı sağlama fonksiyonlarına sahip olup, genel amaç ambalaj ürün etkilişiminin inert olmasıdır. Bununla birlikte tüketicilerin yaşam tarzlarının değişmesi, daha taze ve katkı maddesi kullanılmayan ürünleri tercih etmesi ve perakende uygulamalarındaki değişiklikler, yeni ambalaj teknolojilerindeki gelişmeleri tetiklemektedir. Bu teknolojilerden bir tanesi olan aktif ambalajlama, ambalajlara eklenen çeşitli bileşenlerle (oksijen, karbondioksit, etilen tutucular, nem düzenleyiciler veya antimikrobiyaller) meyve ve sebzelerin kalitelerinin korunması ve raf ömrünün uzatılması konusunda gıda endüstrisine alternatif çözümler sunmaktadır. Oksijen tutucular ambalaj içerisindeki oksijen konsantrasyonu azaltarak solunum hızının düşürülmesini sağlarken, karbondioksit tutucular fazla karbon dioksitin üründe meydana getireceği olumsuz değişiklikleri engellemek için kullanılmaktadır. Etilen tutucular klimaterik meyvelerde yaşlanma reaksiyonlarını azaltmak için ambalajlara eklenmektedir. Nem düzenleyiciler ise ambalaj içerisindeki yüksek nem dolayısıyla meyve ve sebzelerde gerçekleşen istenmeyen değişimleri engellemek amacıyla kullanılmaktadır. Antimikrobiyal bileşenler de mikrobiyal bozulmayı azaltmak ve gıda güvenliğini sağlamak için meyve ve sebzelerde kullanılmaktadır. Bu derleme makalede, aktif ambalajlamada kullanılan bileşenler özetlenmiş ve bu bileşenlerin meyve ve sebzelerdeki uygulamaları konuları açıklanmıştır.

References

  • Abe, K., & Watada, A.E. (1991). Ethylene absorbent to maintain quality of lightly processed fruits and vegetables. Journal of Food Science, 56(6), 1589-1592.
  • Açışlı, Ö. (2019). Doum palm meyve kabuklarından aktif karbon üretimi ve karakterizasyonu. Avrupa Bilim ve Teknoloji Dergisi, 16, 544-551.
  • Aday, M.S., & Caner, C. (2013). The shelf life extension of fresh strawberries using an oxygen absorber in the biobased package. LWT-Food Science and Technology, 52(2), 102-109.
  • Aday, M.S., Caner, C., & Rahvalı, F. (2011). Effect of oxygen and carbon dioxide absorbers on strawberry quality. Postharvest Biology and Technology, 62(2), 179-187.
  • Aday, M.S., & Yener, U. (2014). Understanding the buying behaviour of young consumers regarding packaging attributes and labels. International Journal of Consumer Studies, 38(4), 385-393.
  • Ahmed, I., Lin, H., Zou, L., Brody, A.L., Li, Z., Qazi, I.M., Pavase, T.R., & Lv, L. (2017). A comprehensive review on the application of active packaging technologies to muscle foods. Food Control, 82, 163-178.
  • Akarca, G., & Tomar, O. (2019). Afyonkarahisar ili çevresinde yetişen ve halk tarafından tüketilen bazı yabani bitkilerin antioksidan ve antimikrobiyal etkileri. Avrupa Bilim ve Teknoloji Dergisi(15), 259-268.
  • Aksoy, A. (2020). Gıda endüstrisinde elektrolize su kullanımı. Avrupa Bilim ve Teknoloji Dergisi, 19, 254-262.
  • An, D.S. (2016). Effect of active master packaging system on preservation of fresh shiitake mushrooms in supply chain. Journal of the Korean Society of Food Science and Nutrition, 45(3), 402-408.
  • Appendini, P., & Hotchkiss, J.H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3(2), 113-126.
  • Bal, E., & Celik, S. (2010). The effects of postharvest treatments of salicylic acid and potassium permanganate on the storage of kiwifruit. Bulg. J. Agric. Sci, 16(2), 576-584.
  • Balasubramanian, A., Rosenberg, L.E., Yam, K.I.T., & Chikindas, M.L. (2009). Antimicrobial packaging: potential vs. reality—a review. Journal of Applied Packaging Research, 3(4), 193-221.
  • Barska, A., & Wyrwa, J. (2016). Consumer perception of active intelligent food packaging. Problems of Agricultural Economics, 4_2016.
  • Biji, K.B., Ravishankar, C.N., Mohan, C.O., & Gopal, T.K.S. (2015). Smart packaging systems for food applications: a review. Journal of Food Science and Technology, 52(10), 6125-6135.
  • Bodbodak, S., & Rafiee, Z. (2016). Recent trends in active packaging in fruits and vegetables. In: Eco-friendly technology for postharvest produce quality, M. W. Siddiqui (Eds.), Elsevier, New York, 77-125.
  • Bovi, G.G., Caleb, O.J., Klaus, E., Tintchev, F., Rauh, C., & Mahajan, P.V. (2018). Moisture absorption kinetics of FruitPad for packaging of fresh strawberry. Journal of Food Engineering, 223, 248-254.
  • Brody, A.L., Bugusu, B., Han, J.H., Sand, C.K., & McHugh, T.H. (2008). Innovative food packaging solutions. Journal of Food Science, 73(8), 107-116.
  • Brody, A.L., Strupinsky, G.R., & Pruskin, L.R. (1995). The use of oxygen scavengers and active packaging to reduce oxygen within internal package environments. U.S. Army Soldier Systems Command Technical Report, 1-124.
  • Charles, F., Guillaume, C., & Gontard, N. (2008). Effect of passive and active modified atmosphere packaging on quality changes of fresh endives. Postharvest Biology and Technology, 48(1), 22-29.
  • Charles, F., Rugani, N., & Gontard, N. (2005). Influence of packaging conditions on natural microbial population growth of endive. Journal of Food Protection, 68(5), 1020-1025.
  • Charles, F., Sanchez, J., & Gontard, N. (2003). Active modified atmosphere packaging of fresh fruits and vegetables: modeling with tomatoes and oxygen absorber. Journal of Food Science, 68(5), 1736-1742.
  • Chien, P.-J., Sheu, F., & Yang, F.-H. (2007). Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. Journal of Food Engineering, 78(1), 225-229.
  • Corrales, M., Fernández, A., & Han, J.H. (2014). Antimicrobial Packaging Systems. In: Innovations in Food Packaging J. H. Han (Eds.), Academic Press, San Diego, 133-170.
  • Çağlar, M., & Demirci, M. (2018). Üzümsü meyvelerde bulunan fenolik bileşikler ve beslenmedeki önemi. Avrupa Bilim ve Teknoloji Dergisi, 7(11), 18-26.
  • Daeschel, M.A., McGuire, J., & Al-Makhlafi, H. (1992). Antimicrobial activity of nisin adsorbed to hydrophilic and hydrophobic silicon surfaces. Journal of Food Protection, 55(9), 731-735.
  • Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., & Tobback, P. (2008). Active and intelligent food packaging: legal aspects and safety concerns. Trends in Food Science & Technology, 19, S103-S112.
  • Day, B.P.F., & Potter, L. (2011). Active packaging. Food beverage packaging technology, 251-262.
  • DeEll, J.R., Toivonen, P.M.A., Cornut, F., Roger, C., & Vigneault, C. (2006). Addition of sorbitol with KMnO4 improves broccoli quality retention in modified atmosphere packages. Journal of Food Quality, 29(1), 65-75.
  • Demirci, M., Sağdıç, O., Çavuş, M., Pehlivanoğlu, H., Yilmaz, M.T., & ÇağLar, M. (2017). Prebiyotik oligosakkaritlerin kaynakları, üretimleri ve gıda uygulamaları. Avrupa Bilim ve Teknoloji Dergisi, 6(10), 20-31.
  • Demirgül, F., & Sağdıç, O. (2017). Laktik starter kültür üretim teknolojisi. Avrupa Bilim ve Teknoloji Dergisi, 7(11), 27-37.
  • Demirgül, F., & Sağdıç, O. (2018). Fermente süt ürünlerinin insan sağlığına etkisi. Avrupa Bilim ve Teknoloji Dergisi, 13, 45-53.
  • Eissa, H.A.A. (2007). Effect of chitosan coating on shelf life and qaulity of fresh cut mushroom. Journal of Food Quality, 30(5), 623-645.
  • Esmeray, E., & Özata, O. (2019). Nanopartiküllerin çevre mühendisliğinde kullanımı ve temel laboratuvar malzemeleri ile gümüş nanopartikül (AgNPs) sentezi. Avrupa Bilim ve Teknoloji Dergisi, 16, 521-527.
  • Gaikwad, K.K., Singh, S., & Ajji, A. (2019). Moisture absorbers for food packaging applications. Environmental Chemistry Letters, 17(2), 609-628.
  • Gaikwad, K.K., Singh, S., & Lee, Y.S. (2018). Oxygen scavenging films in food packaging. Environmental Chemistry Letters, 16(2), 523-538.
  • Gaikwad, K.K., Singh, S., & Negi, Y.S. (2020). Ethylene scavengers for active packaging of fresh food produce. Environmental Chemistry Letters, 1-16.
  • Galić, K., Ščetar, M., & Kurek, M. (2011). The benefits of processing and packaging. Trends in Food Science & Technology, 22(2-3), 127-137.
  • Garipoğlu, G. (2019). Enzime dirençli nişasta kullanarak fonksiyonel galeta geliştirilmesi. Avrupa Bilim ve Teknoloji Dergisi, 15, 375-380.
  • Gavara, R., Catalá, R., & Hernández-Muñoz, P. (2009). Extending the shelf-life of fresh-cut produce through active packaging. Stewart Postharvest Review, 5(4), 1-5.
  • Han, J.H. (2014). A review of food packaging technologies and innovations. In: Innovations in food packaging, S. L. Taylor (Eds.), Elsevier, New York, 3-12.
  • Han, J.W., Ruiz‐Garcia, L., Qian, J.P., & Yang, X.T. (2018). Food packaging: A comprehensive review and future trends. Comprehensive Reviews in Food Science and Food Safety, 17(4), 860-877.
  • Harun, U., & Çetin, B. (2018). Etil pirüvat buharının tavuk etinin raf ömrü üzerine etkisi. Avrupa Bilim ve Teknoloji Dergisi, 14, 255-260.
  • Hotchkiss, J.H. (1997). Food‐packaging interactions influencing quality and safety. Food Additives & Contaminants, 14(6-7), 601-607.
  • Huang, W.-H., Hsu, C.-K., & Chiang, B.-H. (1999). Formulations of controlled atmosphere agents for packaged foods. Journal of Agricultural and Food Chemistry, 47(3), 906-910.
  • Hurme, E., Thea, S.-M., Ahvenainen, R., & Nielsen, T. (2002). Active and intelligent packaging. In: Minimal Processing Technologies in the Food Industries, T. Ohlsson & N. Bengtsson (Eds.), Woodhead New York, 87-123.
  • Jain, A., Duvvuri, L.S., Farah, S., Beyth, N., Domb, A.J., & Khan, W. (2014). Antimicrobial Polymers. Advanced Healthcare Materials, 3(12), 1969-1985.
  • Kaewklin, P., Siripatrawan, U., Suwanagul, A., & Lee, Y.S. (2018). Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. International Journal of Biological Macromolecules, 112, 523-529.
  • Kartal, S., Aday, M.S., & Caner, C. (2012). Use of microperforated films and oxygen scavengers to maintain storage stability of fresh strawberries. Postharvest Biology and Technology, 71, 32-40.
  • Lee, D.S. (2016). Carbon dioxide absorbers for food packaging applications. Trends in Food Science & Technology, 57, 146-155.
  • Lelièvre, J.M., Latchè, A., Jones, B., Bouzayen, M., & Pech, J.C. (1997). Ethylene and fruit ripening. Physiologia plantarum, 101(4), 727-739.
  • Li, T., Lloyd, K., Birch, J., Wu, X., Mirosa, M., & Liao, X. (2020). A quantitative survey of consumer perceptions of smart food packaging in China. Food science & nutrition, 8(8), 3977-3988.
  • Li, W., Li, L., Cao, Y., Lan, T., Chen, H., & Qin, Y. (2017). Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple. Nanomaterials, 7(8), 207.
  • Lopez-Rubio, A., Almenar, E., Hernandez-Muñoz, P., Lagarón, J.M., Catalá, R., & Gavara, R. (2004). Overview of active polymer-based packaging technologies for food applications. Food Reviews International, 20(4), 357-387.
  • Loucanova, E., Kalamarova, M., & Parobek, J. (2017). The Innovative Approaches to Packaging – Comparison Analysis of Intelligent and Active Packaging Perceptions in Slovakia. Studia Universitatis Vasile Goldis Arad – Economics Series, 27(2), 33-44.
  • Mikkola, V., Lähteenmäki, L., Hurme, E., Heiniö, R.-L., Järvi-Kääriäinen, T., & Ahvenainen, R. (1997). Consumer attitudes towards oxygen absorbers in food packages: Technical Research Centre of Finland Espoo.
  • Mousavi Khaneghah, A., Hashemi, S.M.B., & Limbo, S. (2018). Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1-19.
  • Nugraha, B., Bintoro, N., & Murayama, H. (2015). Influence of CO2 and C2H4 Adsorbents to the Symptoms of Internal Browning on the Packaged ‘Silver Bell’ Pear (Pyrus communis L.). Agriculture and Agricultural Science Procedia, 3, 127-131.
  • O’ Callaghan, K.A.M., & Kerry, J.P. (2016). Consumer attitudes towards the application of smart packaging technologies to cheese products. Food Packaging and Shelf Life, 9, 1-9.
  • Otoni, C.G., Espitia, P.J.P., Avena-Bustillos, R.J., & McHugh, T.H. (2016). Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, 83, 60-73.
  • Ozdemir, M., & Floros, J.D. (2004). Active food packaging technologies. Critical Reviews in Food Science and Nutrition, 44(3), 185-193.
  • Pereira de Abreu, D.A., Cruz, J.M., & Paseiro Losada, P. (2012). Active and intelligent packaging for the food industry. Food Reviews International, 28(2), 146-187.
  • Popa, I., Hanson, E.J., Todd, E.C.D., Schilder, A.C., & Ryser, E.T. (2007). Efficacy of chlorine dioxide gas sachets for enhancing the microbiological quality and safety of blueberries. Journal of Food Protection, 70(9), 2084-2088.
  • Prasad, P., & Kochhar, A. (2014). Active packaging in food industry: a review. Journal of Environmental Science, Toxicology and Food Technology, 8(5), 1-7.
  • Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 62(3), 373-380.
  • Recep, K., Acaröz, U., Gürler, Z., Soylu, A., & Küçükkurt, O. (2019). Taze marul örneklerinde Escherichia coli O157 ve Listeria monocytogenes varlığının belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, 16, 870-873.
  • Roberts, R. ((2003)). Consumer attitudes and future market trends for active & intelligent packaging. Actipak unwraps Europe Conference, 23-26.
  • Rooney, M.L. (1995). Overview of active food packaging. In: Active food packaging, M. L. Rooney (Eds.), Springer, Boston, 1-37. Roy, S., Anantheswaran, R.C., & Beelman, R.B. (1995). Sorbitol increases shelf life of fresh mushrooms stored in conventional packages. Journal of Food Science, 60(6), 1254-1259.
  • Sağdıç, O., Kayacan, S., Dertli, E., & Arici, M. (2020). Gıda güvenliği açısından COVID-19 etmeni SARS-CoV-2’nin değerlendirilmesi ve korunma yöntemleri. Avrupa Bilim ve Teknoloji Dergisi, 18, 927-933.
  • Scully, A.D., & Horsham, M.A. (2007). Active packaging for fruits and vegetables. In: Intelligent and Active Packaging for Fruits and Vegetables, C. L. Wilson (Eds.), CRC Press, Boca Raton, 57-71.
  • Shetty, K.K., & Dwelle, R.B. (1990). Disease and sprout control in individually film wrapped potatoes. American potato journal, 67(10), 705-718.
  • Shirazi, A., & Cameron, A.C. (1992). Controlling relative humidity in modified atmosphere packages of tomato fruit. HortScience, 27(4), 336-339.
  • Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S.W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68(2), 408-420.
  • Tomar, O., & Akarca, G. (2019). Farklı bitki ekstraktlarıyla kaplamanın kaşar peynirlerinin mikrobiyolojik ve duyusal kaliteleri üzerine etkileri. Avrupa Bilim ve Teknoloji Dergisi, 15, 86-95.
  • Tzeng, J.H., Weng, C.H., Huang, J.W., Shiesh, C.C., Lin, Y.H., & Lin, Y.T. (2019). Application of palladium‐modified zeolite for prolonging post‐harvest shelf life of banana. Journal of the Science of Food Agriculture, 99(7), 3467-3474.
  • Veasna, H., Hwang, Y.-S., Choi, J.-M., Ahn, Y.-J., Lim, B.-S., & Chun, J.-P. (2012). 1-Methylcyclopropene and carbon dioxide absorber reduce chilling ınjury of eggplant (Solanum melongena l.) during map storage. Protected Horticulture and Plant Factory, 21(1), 50-56.
  • Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N., & Debevere, J. (1999). Developments in the active packaging of foods. Trends in Food Science & Technology, 10(3), 77-86.
  • Vilela, C., Kurek, M., Hayouka, Z., Röcker, B., Yildirim, S., Antunes, M.D.C., Nilsen-Nygaard, J., Pettersen, M.K., & Freire, C.S.R. (2018). A concise guide to active agents for active food packaging. Trends in Food Science & Technology, 80, 212-222.
  • Watkins, C.B. (2000). Responses of horticultural commodities to high carbon dioxide as related to modified atmosphere packaging. HortTechnology, 10(3), 501-506.
  • Yildirim, S., Röcker, B., Pettersen, M.K., Nilsen‐Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., & Coma, V. (2018). Active packaging applications for food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165-199.
  • Zagory, D. (1995). Ethylene-removing packaging. In: Active food packaging, M. L. Rooney (Eds.), Springer, UK, 38-54.

The Use of Active Packaging Technology in Fruits and Vegetables

Year 2021, Issue: 21, 122 - 130, 31.01.2021
https://doi.org/10.31590/ejosat.840317

Abstract

Demand for fresh fruits and vegetables has been increasing in recent years as consumers tend to a healthier lifestyle and foods with high nutritional value. However, fruits and vegetables continue to live after they have been harvested and the rate of many reactions such as respiration and transpiration varies according to the environmental conditions and post-harvest methods applied. The most important goals of post-harvest preservation methods used in fresh fruits and vegetables includes reducing the respiration rate and delaying the microbial spoilage. Whichever method is used, the packaging technology and packaging materials directly affect the shelf life of fresh fruits and vegetables. Traditional packaging technologies include the functions of containment, preservation, communication, and ease of use but the general aim to make these traditional packages is to maintain inert conditions between package and food. In addition, changes in consumers' lifestyles, preference for fresh and additive-free products and retail practices promotes the developments in new packaging technologies. Active packaging, one of these technologies, offers alternative solutions to the food industry by preserving the quality of fruits and vegetables and extending their shelf life with various components (oxygen, carbon dioxide, ethylene scavengers, moisture regulators or antimicrobials) added to the package. Oxygen scavengers slow down the respiration rate by reducing the oxygen concentration in the package and carbon dioxide scavengers are used to prevent the negative changes in the product caused by excess carbon dioxide concentration. Ethylene scavengers are added to packages of climatic fruits to reduce senescence reactions. Moisture regulators are used to avoid unwanted changes in fruits and vegetables due to high humidity in the package. Antimicrobial compounds are also used in fruits and vegetables to reduce microbial spoilage and ensure food safety. In this review article, the components used in active packaging are summarized and applications of these ingredients in fruits and vegetables packages are explained.

References

  • Abe, K., & Watada, A.E. (1991). Ethylene absorbent to maintain quality of lightly processed fruits and vegetables. Journal of Food Science, 56(6), 1589-1592.
  • Açışlı, Ö. (2019). Doum palm meyve kabuklarından aktif karbon üretimi ve karakterizasyonu. Avrupa Bilim ve Teknoloji Dergisi, 16, 544-551.
  • Aday, M.S., & Caner, C. (2013). The shelf life extension of fresh strawberries using an oxygen absorber in the biobased package. LWT-Food Science and Technology, 52(2), 102-109.
  • Aday, M.S., Caner, C., & Rahvalı, F. (2011). Effect of oxygen and carbon dioxide absorbers on strawberry quality. Postharvest Biology and Technology, 62(2), 179-187.
  • Aday, M.S., & Yener, U. (2014). Understanding the buying behaviour of young consumers regarding packaging attributes and labels. International Journal of Consumer Studies, 38(4), 385-393.
  • Ahmed, I., Lin, H., Zou, L., Brody, A.L., Li, Z., Qazi, I.M., Pavase, T.R., & Lv, L. (2017). A comprehensive review on the application of active packaging technologies to muscle foods. Food Control, 82, 163-178.
  • Akarca, G., & Tomar, O. (2019). Afyonkarahisar ili çevresinde yetişen ve halk tarafından tüketilen bazı yabani bitkilerin antioksidan ve antimikrobiyal etkileri. Avrupa Bilim ve Teknoloji Dergisi(15), 259-268.
  • Aksoy, A. (2020). Gıda endüstrisinde elektrolize su kullanımı. Avrupa Bilim ve Teknoloji Dergisi, 19, 254-262.
  • An, D.S. (2016). Effect of active master packaging system on preservation of fresh shiitake mushrooms in supply chain. Journal of the Korean Society of Food Science and Nutrition, 45(3), 402-408.
  • Appendini, P., & Hotchkiss, J.H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3(2), 113-126.
  • Bal, E., & Celik, S. (2010). The effects of postharvest treatments of salicylic acid and potassium permanganate on the storage of kiwifruit. Bulg. J. Agric. Sci, 16(2), 576-584.
  • Balasubramanian, A., Rosenberg, L.E., Yam, K.I.T., & Chikindas, M.L. (2009). Antimicrobial packaging: potential vs. reality—a review. Journal of Applied Packaging Research, 3(4), 193-221.
  • Barska, A., & Wyrwa, J. (2016). Consumer perception of active intelligent food packaging. Problems of Agricultural Economics, 4_2016.
  • Biji, K.B., Ravishankar, C.N., Mohan, C.O., & Gopal, T.K.S. (2015). Smart packaging systems for food applications: a review. Journal of Food Science and Technology, 52(10), 6125-6135.
  • Bodbodak, S., & Rafiee, Z. (2016). Recent trends in active packaging in fruits and vegetables. In: Eco-friendly technology for postharvest produce quality, M. W. Siddiqui (Eds.), Elsevier, New York, 77-125.
  • Bovi, G.G., Caleb, O.J., Klaus, E., Tintchev, F., Rauh, C., & Mahajan, P.V. (2018). Moisture absorption kinetics of FruitPad for packaging of fresh strawberry. Journal of Food Engineering, 223, 248-254.
  • Brody, A.L., Bugusu, B., Han, J.H., Sand, C.K., & McHugh, T.H. (2008). Innovative food packaging solutions. Journal of Food Science, 73(8), 107-116.
  • Brody, A.L., Strupinsky, G.R., & Pruskin, L.R. (1995). The use of oxygen scavengers and active packaging to reduce oxygen within internal package environments. U.S. Army Soldier Systems Command Technical Report, 1-124.
  • Charles, F., Guillaume, C., & Gontard, N. (2008). Effect of passive and active modified atmosphere packaging on quality changes of fresh endives. Postharvest Biology and Technology, 48(1), 22-29.
  • Charles, F., Rugani, N., & Gontard, N. (2005). Influence of packaging conditions on natural microbial population growth of endive. Journal of Food Protection, 68(5), 1020-1025.
  • Charles, F., Sanchez, J., & Gontard, N. (2003). Active modified atmosphere packaging of fresh fruits and vegetables: modeling with tomatoes and oxygen absorber. Journal of Food Science, 68(5), 1736-1742.
  • Chien, P.-J., Sheu, F., & Yang, F.-H. (2007). Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. Journal of Food Engineering, 78(1), 225-229.
  • Corrales, M., Fernández, A., & Han, J.H. (2014). Antimicrobial Packaging Systems. In: Innovations in Food Packaging J. H. Han (Eds.), Academic Press, San Diego, 133-170.
  • Çağlar, M., & Demirci, M. (2018). Üzümsü meyvelerde bulunan fenolik bileşikler ve beslenmedeki önemi. Avrupa Bilim ve Teknoloji Dergisi, 7(11), 18-26.
  • Daeschel, M.A., McGuire, J., & Al-Makhlafi, H. (1992). Antimicrobial activity of nisin adsorbed to hydrophilic and hydrophobic silicon surfaces. Journal of Food Protection, 55(9), 731-735.
  • Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., & Tobback, P. (2008). Active and intelligent food packaging: legal aspects and safety concerns. Trends in Food Science & Technology, 19, S103-S112.
  • Day, B.P.F., & Potter, L. (2011). Active packaging. Food beverage packaging technology, 251-262.
  • DeEll, J.R., Toivonen, P.M.A., Cornut, F., Roger, C., & Vigneault, C. (2006). Addition of sorbitol with KMnO4 improves broccoli quality retention in modified atmosphere packages. Journal of Food Quality, 29(1), 65-75.
  • Demirci, M., Sağdıç, O., Çavuş, M., Pehlivanoğlu, H., Yilmaz, M.T., & ÇağLar, M. (2017). Prebiyotik oligosakkaritlerin kaynakları, üretimleri ve gıda uygulamaları. Avrupa Bilim ve Teknoloji Dergisi, 6(10), 20-31.
  • Demirgül, F., & Sağdıç, O. (2017). Laktik starter kültür üretim teknolojisi. Avrupa Bilim ve Teknoloji Dergisi, 7(11), 27-37.
  • Demirgül, F., & Sağdıç, O. (2018). Fermente süt ürünlerinin insan sağlığına etkisi. Avrupa Bilim ve Teknoloji Dergisi, 13, 45-53.
  • Eissa, H.A.A. (2007). Effect of chitosan coating on shelf life and qaulity of fresh cut mushroom. Journal of Food Quality, 30(5), 623-645.
  • Esmeray, E., & Özata, O. (2019). Nanopartiküllerin çevre mühendisliğinde kullanımı ve temel laboratuvar malzemeleri ile gümüş nanopartikül (AgNPs) sentezi. Avrupa Bilim ve Teknoloji Dergisi, 16, 521-527.
  • Gaikwad, K.K., Singh, S., & Ajji, A. (2019). Moisture absorbers for food packaging applications. Environmental Chemistry Letters, 17(2), 609-628.
  • Gaikwad, K.K., Singh, S., & Lee, Y.S. (2018). Oxygen scavenging films in food packaging. Environmental Chemistry Letters, 16(2), 523-538.
  • Gaikwad, K.K., Singh, S., & Negi, Y.S. (2020). Ethylene scavengers for active packaging of fresh food produce. Environmental Chemistry Letters, 1-16.
  • Galić, K., Ščetar, M., & Kurek, M. (2011). The benefits of processing and packaging. Trends in Food Science & Technology, 22(2-3), 127-137.
  • Garipoğlu, G. (2019). Enzime dirençli nişasta kullanarak fonksiyonel galeta geliştirilmesi. Avrupa Bilim ve Teknoloji Dergisi, 15, 375-380.
  • Gavara, R., Catalá, R., & Hernández-Muñoz, P. (2009). Extending the shelf-life of fresh-cut produce through active packaging. Stewart Postharvest Review, 5(4), 1-5.
  • Han, J.H. (2014). A review of food packaging technologies and innovations. In: Innovations in food packaging, S. L. Taylor (Eds.), Elsevier, New York, 3-12.
  • Han, J.W., Ruiz‐Garcia, L., Qian, J.P., & Yang, X.T. (2018). Food packaging: A comprehensive review and future trends. Comprehensive Reviews in Food Science and Food Safety, 17(4), 860-877.
  • Harun, U., & Çetin, B. (2018). Etil pirüvat buharının tavuk etinin raf ömrü üzerine etkisi. Avrupa Bilim ve Teknoloji Dergisi, 14, 255-260.
  • Hotchkiss, J.H. (1997). Food‐packaging interactions influencing quality and safety. Food Additives & Contaminants, 14(6-7), 601-607.
  • Huang, W.-H., Hsu, C.-K., & Chiang, B.-H. (1999). Formulations of controlled atmosphere agents for packaged foods. Journal of Agricultural and Food Chemistry, 47(3), 906-910.
  • Hurme, E., Thea, S.-M., Ahvenainen, R., & Nielsen, T. (2002). Active and intelligent packaging. In: Minimal Processing Technologies in the Food Industries, T. Ohlsson & N. Bengtsson (Eds.), Woodhead New York, 87-123.
  • Jain, A., Duvvuri, L.S., Farah, S., Beyth, N., Domb, A.J., & Khan, W. (2014). Antimicrobial Polymers. Advanced Healthcare Materials, 3(12), 1969-1985.
  • Kaewklin, P., Siripatrawan, U., Suwanagul, A., & Lee, Y.S. (2018). Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. International Journal of Biological Macromolecules, 112, 523-529.
  • Kartal, S., Aday, M.S., & Caner, C. (2012). Use of microperforated films and oxygen scavengers to maintain storage stability of fresh strawberries. Postharvest Biology and Technology, 71, 32-40.
  • Lee, D.S. (2016). Carbon dioxide absorbers for food packaging applications. Trends in Food Science & Technology, 57, 146-155.
  • Lelièvre, J.M., Latchè, A., Jones, B., Bouzayen, M., & Pech, J.C. (1997). Ethylene and fruit ripening. Physiologia plantarum, 101(4), 727-739.
  • Li, T., Lloyd, K., Birch, J., Wu, X., Mirosa, M., & Liao, X. (2020). A quantitative survey of consumer perceptions of smart food packaging in China. Food science & nutrition, 8(8), 3977-3988.
  • Li, W., Li, L., Cao, Y., Lan, T., Chen, H., & Qin, Y. (2017). Effects of PLA film incorporated with ZnO nanoparticle on the quality attributes of fresh-cut apple. Nanomaterials, 7(8), 207.
  • Lopez-Rubio, A., Almenar, E., Hernandez-Muñoz, P., Lagarón, J.M., Catalá, R., & Gavara, R. (2004). Overview of active polymer-based packaging technologies for food applications. Food Reviews International, 20(4), 357-387.
  • Loucanova, E., Kalamarova, M., & Parobek, J. (2017). The Innovative Approaches to Packaging – Comparison Analysis of Intelligent and Active Packaging Perceptions in Slovakia. Studia Universitatis Vasile Goldis Arad – Economics Series, 27(2), 33-44.
  • Mikkola, V., Lähteenmäki, L., Hurme, E., Heiniö, R.-L., Järvi-Kääriäinen, T., & Ahvenainen, R. (1997). Consumer attitudes towards oxygen absorbers in food packages: Technical Research Centre of Finland Espoo.
  • Mousavi Khaneghah, A., Hashemi, S.M.B., & Limbo, S. (2018). Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food and Bioproducts Processing, 111, 1-19.
  • Nugraha, B., Bintoro, N., & Murayama, H. (2015). Influence of CO2 and C2H4 Adsorbents to the Symptoms of Internal Browning on the Packaged ‘Silver Bell’ Pear (Pyrus communis L.). Agriculture and Agricultural Science Procedia, 3, 127-131.
  • O’ Callaghan, K.A.M., & Kerry, J.P. (2016). Consumer attitudes towards the application of smart packaging technologies to cheese products. Food Packaging and Shelf Life, 9, 1-9.
  • Otoni, C.G., Espitia, P.J.P., Avena-Bustillos, R.J., & McHugh, T.H. (2016). Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Research International, 83, 60-73.
  • Ozdemir, M., & Floros, J.D. (2004). Active food packaging technologies. Critical Reviews in Food Science and Nutrition, 44(3), 185-193.
  • Pereira de Abreu, D.A., Cruz, J.M., & Paseiro Losada, P. (2012). Active and intelligent packaging for the food industry. Food Reviews International, 28(2), 146-187.
  • Popa, I., Hanson, E.J., Todd, E.C.D., Schilder, A.C., & Ryser, E.T. (2007). Efficacy of chlorine dioxide gas sachets for enhancing the microbiological quality and safety of blueberries. Journal of Food Protection, 70(9), 2084-2088.
  • Prasad, P., & Kochhar, A. (2014). Active packaging in food industry: a review. Journal of Environmental Science, Toxicology and Food Technology, 8(5), 1-7.
  • Quintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 62(3), 373-380.
  • Recep, K., Acaröz, U., Gürler, Z., Soylu, A., & Küçükkurt, O. (2019). Taze marul örneklerinde Escherichia coli O157 ve Listeria monocytogenes varlığının belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi, 16, 870-873.
  • Roberts, R. ((2003)). Consumer attitudes and future market trends for active & intelligent packaging. Actipak unwraps Europe Conference, 23-26.
  • Rooney, M.L. (1995). Overview of active food packaging. In: Active food packaging, M. L. Rooney (Eds.), Springer, Boston, 1-37. Roy, S., Anantheswaran, R.C., & Beelman, R.B. (1995). Sorbitol increases shelf life of fresh mushrooms stored in conventional packages. Journal of Food Science, 60(6), 1254-1259.
  • Sağdıç, O., Kayacan, S., Dertli, E., & Arici, M. (2020). Gıda güvenliği açısından COVID-19 etmeni SARS-CoV-2’nin değerlendirilmesi ve korunma yöntemleri. Avrupa Bilim ve Teknoloji Dergisi, 18, 927-933.
  • Scully, A.D., & Horsham, M.A. (2007). Active packaging for fruits and vegetables. In: Intelligent and Active Packaging for Fruits and Vegetables, C. L. Wilson (Eds.), CRC Press, Boca Raton, 57-71.
  • Shetty, K.K., & Dwelle, R.B. (1990). Disease and sprout control in individually film wrapped potatoes. American potato journal, 67(10), 705-718.
  • Shirazi, A., & Cameron, A.C. (1992). Controlling relative humidity in modified atmosphere packages of tomato fruit. HortScience, 27(4), 336-339.
  • Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S.W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68(2), 408-420.
  • Tomar, O., & Akarca, G. (2019). Farklı bitki ekstraktlarıyla kaplamanın kaşar peynirlerinin mikrobiyolojik ve duyusal kaliteleri üzerine etkileri. Avrupa Bilim ve Teknoloji Dergisi, 15, 86-95.
  • Tzeng, J.H., Weng, C.H., Huang, J.W., Shiesh, C.C., Lin, Y.H., & Lin, Y.T. (2019). Application of palladium‐modified zeolite for prolonging post‐harvest shelf life of banana. Journal of the Science of Food Agriculture, 99(7), 3467-3474.
  • Veasna, H., Hwang, Y.-S., Choi, J.-M., Ahn, Y.-J., Lim, B.-S., & Chun, J.-P. (2012). 1-Methylcyclopropene and carbon dioxide absorber reduce chilling ınjury of eggplant (Solanum melongena l.) during map storage. Protected Horticulture and Plant Factory, 21(1), 50-56.
  • Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N., & Debevere, J. (1999). Developments in the active packaging of foods. Trends in Food Science & Technology, 10(3), 77-86.
  • Vilela, C., Kurek, M., Hayouka, Z., Röcker, B., Yildirim, S., Antunes, M.D.C., Nilsen-Nygaard, J., Pettersen, M.K., & Freire, C.S.R. (2018). A concise guide to active agents for active food packaging. Trends in Food Science & Technology, 80, 212-222.
  • Watkins, C.B. (2000). Responses of horticultural commodities to high carbon dioxide as related to modified atmosphere packaging. HortTechnology, 10(3), 501-506.
  • Yildirim, S., Röcker, B., Pettersen, M.K., Nilsen‐Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., & Coma, V. (2018). Active packaging applications for food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165-199.
  • Zagory, D. (1995). Ethylene-removing packaging. In: Active food packaging, M. L. Rooney (Eds.), Springer, UK, 38-54.
There are 80 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mehmet Seçkin Aday 0000-0002-5669-5812

Publication Date January 31, 2021
Published in Issue Year 2021 Issue: 21

Cite

APA Aday, M. S. (2021). Meyve ve Sebzelerde Aktif Ambalajlama Teknolojisinin Kullanımı. Avrupa Bilim Ve Teknoloji Dergisi(21), 122-130. https://doi.org/10.31590/ejosat.840317

Cited By

Ette Lipit Oksidasyonu ve Etkileyen Faktörler
European Journal of Science and Technology
Güleren SABUNCULAR
https://doi.org/10.31590/ejosat.924905