Review
BibTex RIS Cite

Antosiyanin Stabilite Artırma Metotları: Fenolik Kopigmentasyonu

Year 2022, Issue: 38, 276 - 281, 31.08.2022
https://doi.org/10.31590/ejosat.1097890

Abstract

Renk, gıdaların tüketiciler tarafından ilk fark edilen özelliği olup; gıdaların kabulünü doğrudan etkileyen en önemli duyusal özelliklerinden biridir. Gıdaların kendine özgü renkleri olmasına rağmen işlenmeleri esnasında sıcaklık, asitlik ve ışık gibi dış etmenler ile kayıplar olmaktadır. Günümüzde gıdaların renginin korunması amacı ile yapay renk maddeleri sıklıkla kullanılmaktadır. Yapay renk maddelerinin sağlık üzerine olumsuz etkileri sayısı her geçen gün artan bilimsel çalışmalar ile ortaya konmuştur. Artan tüketici bilincine paralel olarak yapay boyaların tüketimi her geçen gün azalmaktadır. Son yıllarda bitkisel kaynaklı doğal renk maddelerine olan ilgi artmıştır. Antosiyanin, klorofil ve karoten gibi bitkisel kaynaklı doğal renklendiriciler farklı gıdalarda kullanılmaktadır. Antosiyaninler, doğal gıda boyası sektörünün en fazla kullanılan pigmentlerinden birisi olup, gıdalara kırmızı, pembe, mor ve mavi renklerin verilmesinde kullanılmaktadır. Antosiyaninlerin gıda boyası olarak kullanılabilmesinin önündeki en büyük engel gıda işleme proseslerine dayanıksız olmasıdır. Termal işlemler, pH değişimi, şeker konsantrasyonu, ışık ve oksijen gibi faktörler antosiyaninlerin kullanımını kısıtlamaktadır. Bu nedenle antosiyaninlerin farklı proseslere dayanımı değişik metotlar ile artırılmaktadır. Enkapsülasyon, moleküler kopigmentasyon ve metal kompleksleri bu konuda en umut verici metotlardandır. Bu derlemede antosiyaninlerin fenolik bileşikler ile kopigmente edilerek stabilitesinin artırılması konusunda literatür taraması yapılarak sonuçlar incelenmiştir.

References

  • Chien, Y. S., Chang, C. W., & Huang, C. C. (2022). Differential surface partitioning for an ultrasensitive solid-state SERS sensor and its application to food colorant analysis. Food Chemistry, 383, 132415.
  • Cortez, R., Luna‐Vital, D. A., Margulis, D., & Gonzalez de Mejia, E. (2017). Natural pigments: stabilization methods of anthocyanins for food applications. Comprehensive Reviews in Food Science and Food Safety, 16(1), 180-198.
  • Cruz, L., BRAs, N. F., Teixeira, N., Mateus, N., Ramos, M. J., Dangles, O., & De Freitas, V. (2010). Vinylcatechin dimers are much better copigments for anthocyanins than catechin dimer procyanidin B3. Journal of agricultural and food chemistry, 58(5), 3159-3166.
  • Fan, L., Wang, Y., Xie, P., Zhang, L., Li, Y., & Zhou, J. (2019). Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation. Food chemistry, 275, 299-308.
  • Fanzone, M., González-Manzano, S., Pérez-Alonso, J., Escribano-Bailón, M. T., Jofré, V., Assof, M., & Santos-Buelga, C. (2015). Evaluation of dihydroquercetin-3-O-glucoside from Malbec grapes as copigment of malvidin-3-O-glucoside. Food chemistry, 175, 166-173.
  • FDA, 2020. Overview of food ingredients, additives & colors. Available online: https://www.fda.gov/food/food-ingredients-packaging/overview-food-ingredients-additives-colors. (Accessed on 23 November 2020).
  • Feng, J., Cerniglia, C. E., & Chen, H. (2012). Toxicological significance of azo dye metabolism by human intestinal microbiota. Frontiers in bioscience (Elite edition), 4, 568.
  • Gris, E. F., Ferreira, E. A., Falcão, L. D., & Bordignon-Luiz, M. T. (2007). Caffeic acid copigmentation of anthocyanins from Cabernet Sauvignon grape extracts in model systems. Food Chemistry, 100(3), 1289-1296.
  • Hernández-Herrero, J. A., & Frutos, M. J. (2015). Influence of rutin and ascorbic acid in colour, plum anthocyanins and antioxidant capacity stability in model juices. Food Chemistry, 173: 495-500.
  • Kanha, N., Surawang, S., Pitchakarn, P., Regenstein, J. M., & Laokuldilok, T. (2019). Copigmentation of cyanidin 3-O-glucoside with phenolics: Thermodynamic data and thermal stability. Food Bioscience, 30, 100419.
  • Kay, C. D., Pereira-Caro, G., Ludwig, I. A., Clifford, M. N., & Crozier, A. (2017). Anthocyanins and flavanones are more bioavailable than previously perceived: A review of recent evidence. Annual Review of Food Science and Technology, 8, 155-180.
  • Luo, C. L., Zhou, Q., Yang, Z. W., Wang, R. D., & Zhang, J. L. (2018). Evaluation of structure and bioprotective activity of key high molecular weight acylated anthocyanin compounds isolated from the purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8). Food Chemistry, 241, 23-31.
  • Marković, J. M. D., Petranović, N. A., & Baranac, J. M. (2005). The copigmentation effect of sinapic acid on malvin: A spectroscopic investigation on colour enhancement. Journal of Photochemistry and Photobiology B: Biology, 78(3), 223-228.
  • Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17), 3809.
  • Neves, M. I. L., Silva, E. K., & Meireles, M. A. A. (2021). Natural blue food colorants: Consumer acceptance, current alternatives, trends, challenges, and future strategies. Trends in Food Science & Technology, 112, 163-173.
  • Robinson, G. M., & Robinson, R. (1931). A survey of anthocyanins. I. Biochemical Journal, 25(5), 1687.
  • Rodriguez-Amaya, D. B. (2016). Natural food pigments and colorants. Current Opinion in Food Science, 7, 20-26.
  • Sadar, P., Dande, P., Kulkami, N., & Pachori, R. (2017). Evaluation of toxicity of synthetic food colors on human normal flora and yeast. International Journal of Health Sciences and Research, 7(8), 110-114.
  • Santos-Buelga, C., González-Paramás, A.M. (2019). Anthocyanins Encyclopedia of Food Chemistry (pp. 10–21), 10.1016/B978-0-08-100596-5.21609-0.
  • Shen, Y., Zhang, N., Tian, J., Xin, G., Liu, L., Sun, X., & Li, B. (2022). Advanced approaches for improving bioavailability and controlled release of anthocyanins. Journal of Controlled Release, 341, 285-299.
  • Sun, X., Shokri, S., Gao, B., Xu, Z., Li, B., Wang, Y., & Zhu, J. (2022). Improving effects of three selected co-pigments on fermentation, color stability, and anthocyanins content of blueberry wine. LWT, 113070.
  • Teixeira, N., Cruz, L., Brás, N. F., Mateus, N., Ramos, M. J., & de Freitas, V. (2013). Structural features of copigmentation of oenin with different polyphenol copigments. Journal of agricultural and food chemistry, 61(28), 6942-6948.
  • Trouillas, P., Sancho-García, J. C., De Freitas, V., Gierschner, J., Otyepka, M., & Dangles, O. (2016). Stabilizing and modulating color by copigmentation: Insights from theory and experiment. Chemical reviews, 116(9), 4937-4982.
  • Weber, F., Boch, K., & Schieber, A. (2017). Influence of copigmentation on the stability of spray dried anthocyanins from blackberry. LWT, 75, 72-77.
  • Xu, Z., Wang, C., Yan, H., Zhao, Z., You, L., & Ho, C. T. (2022). Influence of phenolic acids/aldehydes on color intensification of cyanidin-3-O-glucoside, the main anthocyanin in sugarcane (Saccharum officinarum L.). Food Chemistry, 373, 131396.
  • Zhang, B., Wang, X. Q., Yang, B., Li, N. N., Niu, J. M., Shi, X., & Han, S. Y. (2021). Copigmentation evidence of phenolic compound: The effect of caffeic and rosmarinic acids addition on the chromatic quality and phenolic composition of Cabernet Sauvignon red wine from the Hexi Corridor region (China). Journal of Food Composition and Analysis, 102, 104037.
  • Zhang, X. K., He, F., Zhang, B., Reeves, M. J., Liu, Y., Zhao, X., & Duan, C. Q. (2018). The effect of prefermentative addition of gallic acid and ellagic acid on the red wine color, copigmentation and phenolic profiles during wine aging. Food Research International, 106, 568-579.
  • Zhao, X., & Yuan, Z. (2021). Anthocyanins from pomegranate (Punica granatum l.) and their role in antioxidant capacities in vitro. Chemistry & Biodiversity, 18(10), e2100399.
  • Zhao, X., Ding, B. W., Qin, J. W., He, F., & Duan, C. Q. (2020). Intermolecular copigmentation between five common 3-O-monoglucosidic anthocyanins and three phenolics in red wine model solutions: The influence of substituent pattern of anthocyanin B ring. Food Chemistry, 326, 126960.
  • Zhao, X., He, F., Zhang, X. K., Shi, Y., & Duan, C. Q. (2022). Impact of three phenolic copigments on the stability and color evolution of five basic anthocyanins in model wine systems. Food Chemistry, 375, 131670.
  • Zhu, Y., Chen, H., Lou, L., Chen, Y., Ye, X., & Chen, J. (2020). Copigmentation effect of three phenolic acids on color and thermal stability of Chinese bayberry anthocyanins. Food Science & Nutrition, 8(7), 3234-3242.

Enhancement Methods of Anthocyanin Stability Enhancement Methods: Phenolic Copigmentation

Year 2022, Issue: 38, 276 - 281, 31.08.2022
https://doi.org/10.31590/ejosat.1097890

Abstract

Color is the first feature of foods noticed by consumers; It is one of the essential sensory properties that directly affect the acceptance of foods. Although foods have unique colors, there are losses due to external factors such as temperature, acidity, and light during processing. Today, artificial coloring agents are frequently used to preserve the color of foods. Scientific studies have revealed the adverse effects of artificial colorants on health, the number of which is increasing day by day. In parallel with the increasing consumer awareness, the consumption of synthetic dyes is decreasing day by day. Interest in natural color pigments of vegetable origin has increased in recent years. Natural colorants of plant origin, such as anthocyanin, chlorophyll, and carotene, are used in different foods. Anthocyanins are one of the most widely used pigments in the food industry and give foods red, pink, purple, and blue colors. The biggest obstacle to using anthocyanins as food dyes is that they are not resistant to food processing processes. Factors such as thermal processes, pH change, sugar concentration, light, and oxygen limit the use of anthocyanins. For this reason, the stability of anthocyanins is trying to increase by different methods in different processes. Encapsulation, molecular copigmentation, and metal complexes are the most promising methods. In this review, a literature review on the stability-increasing methods of anthocyanins by copigmenting with phenolic compounds was performed, and the results were examined.

References

  • Chien, Y. S., Chang, C. W., & Huang, C. C. (2022). Differential surface partitioning for an ultrasensitive solid-state SERS sensor and its application to food colorant analysis. Food Chemistry, 383, 132415.
  • Cortez, R., Luna‐Vital, D. A., Margulis, D., & Gonzalez de Mejia, E. (2017). Natural pigments: stabilization methods of anthocyanins for food applications. Comprehensive Reviews in Food Science and Food Safety, 16(1), 180-198.
  • Cruz, L., BRAs, N. F., Teixeira, N., Mateus, N., Ramos, M. J., Dangles, O., & De Freitas, V. (2010). Vinylcatechin dimers are much better copigments for anthocyanins than catechin dimer procyanidin B3. Journal of agricultural and food chemistry, 58(5), 3159-3166.
  • Fan, L., Wang, Y., Xie, P., Zhang, L., Li, Y., & Zhou, J. (2019). Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation. Food chemistry, 275, 299-308.
  • Fanzone, M., González-Manzano, S., Pérez-Alonso, J., Escribano-Bailón, M. T., Jofré, V., Assof, M., & Santos-Buelga, C. (2015). Evaluation of dihydroquercetin-3-O-glucoside from Malbec grapes as copigment of malvidin-3-O-glucoside. Food chemistry, 175, 166-173.
  • FDA, 2020. Overview of food ingredients, additives & colors. Available online: https://www.fda.gov/food/food-ingredients-packaging/overview-food-ingredients-additives-colors. (Accessed on 23 November 2020).
  • Feng, J., Cerniglia, C. E., & Chen, H. (2012). Toxicological significance of azo dye metabolism by human intestinal microbiota. Frontiers in bioscience (Elite edition), 4, 568.
  • Gris, E. F., Ferreira, E. A., Falcão, L. D., & Bordignon-Luiz, M. T. (2007). Caffeic acid copigmentation of anthocyanins from Cabernet Sauvignon grape extracts in model systems. Food Chemistry, 100(3), 1289-1296.
  • Hernández-Herrero, J. A., & Frutos, M. J. (2015). Influence of rutin and ascorbic acid in colour, plum anthocyanins and antioxidant capacity stability in model juices. Food Chemistry, 173: 495-500.
  • Kanha, N., Surawang, S., Pitchakarn, P., Regenstein, J. M., & Laokuldilok, T. (2019). Copigmentation of cyanidin 3-O-glucoside with phenolics: Thermodynamic data and thermal stability. Food Bioscience, 30, 100419.
  • Kay, C. D., Pereira-Caro, G., Ludwig, I. A., Clifford, M. N., & Crozier, A. (2017). Anthocyanins and flavanones are more bioavailable than previously perceived: A review of recent evidence. Annual Review of Food Science and Technology, 8, 155-180.
  • Luo, C. L., Zhou, Q., Yang, Z. W., Wang, R. D., & Zhang, J. L. (2018). Evaluation of structure and bioprotective activity of key high molecular weight acylated anthocyanin compounds isolated from the purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8). Food Chemistry, 241, 23-31.
  • Marković, J. M. D., Petranović, N. A., & Baranac, J. M. (2005). The copigmentation effect of sinapic acid on malvin: A spectroscopic investigation on colour enhancement. Journal of Photochemistry and Photobiology B: Biology, 78(3), 223-228.
  • Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17), 3809.
  • Neves, M. I. L., Silva, E. K., & Meireles, M. A. A. (2021). Natural blue food colorants: Consumer acceptance, current alternatives, trends, challenges, and future strategies. Trends in Food Science & Technology, 112, 163-173.
  • Robinson, G. M., & Robinson, R. (1931). A survey of anthocyanins. I. Biochemical Journal, 25(5), 1687.
  • Rodriguez-Amaya, D. B. (2016). Natural food pigments and colorants. Current Opinion in Food Science, 7, 20-26.
  • Sadar, P., Dande, P., Kulkami, N., & Pachori, R. (2017). Evaluation of toxicity of synthetic food colors on human normal flora and yeast. International Journal of Health Sciences and Research, 7(8), 110-114.
  • Santos-Buelga, C., González-Paramás, A.M. (2019). Anthocyanins Encyclopedia of Food Chemistry (pp. 10–21), 10.1016/B978-0-08-100596-5.21609-0.
  • Shen, Y., Zhang, N., Tian, J., Xin, G., Liu, L., Sun, X., & Li, B. (2022). Advanced approaches for improving bioavailability and controlled release of anthocyanins. Journal of Controlled Release, 341, 285-299.
  • Sun, X., Shokri, S., Gao, B., Xu, Z., Li, B., Wang, Y., & Zhu, J. (2022). Improving effects of three selected co-pigments on fermentation, color stability, and anthocyanins content of blueberry wine. LWT, 113070.
  • Teixeira, N., Cruz, L., Brás, N. F., Mateus, N., Ramos, M. J., & de Freitas, V. (2013). Structural features of copigmentation of oenin with different polyphenol copigments. Journal of agricultural and food chemistry, 61(28), 6942-6948.
  • Trouillas, P., Sancho-García, J. C., De Freitas, V., Gierschner, J., Otyepka, M., & Dangles, O. (2016). Stabilizing and modulating color by copigmentation: Insights from theory and experiment. Chemical reviews, 116(9), 4937-4982.
  • Weber, F., Boch, K., & Schieber, A. (2017). Influence of copigmentation on the stability of spray dried anthocyanins from blackberry. LWT, 75, 72-77.
  • Xu, Z., Wang, C., Yan, H., Zhao, Z., You, L., & Ho, C. T. (2022). Influence of phenolic acids/aldehydes on color intensification of cyanidin-3-O-glucoside, the main anthocyanin in sugarcane (Saccharum officinarum L.). Food Chemistry, 373, 131396.
  • Zhang, B., Wang, X. Q., Yang, B., Li, N. N., Niu, J. M., Shi, X., & Han, S. Y. (2021). Copigmentation evidence of phenolic compound: The effect of caffeic and rosmarinic acids addition on the chromatic quality and phenolic composition of Cabernet Sauvignon red wine from the Hexi Corridor region (China). Journal of Food Composition and Analysis, 102, 104037.
  • Zhang, X. K., He, F., Zhang, B., Reeves, M. J., Liu, Y., Zhao, X., & Duan, C. Q. (2018). The effect of prefermentative addition of gallic acid and ellagic acid on the red wine color, copigmentation and phenolic profiles during wine aging. Food Research International, 106, 568-579.
  • Zhao, X., & Yuan, Z. (2021). Anthocyanins from pomegranate (Punica granatum l.) and their role in antioxidant capacities in vitro. Chemistry & Biodiversity, 18(10), e2100399.
  • Zhao, X., Ding, B. W., Qin, J. W., He, F., & Duan, C. Q. (2020). Intermolecular copigmentation between five common 3-O-monoglucosidic anthocyanins and three phenolics in red wine model solutions: The influence of substituent pattern of anthocyanin B ring. Food Chemistry, 326, 126960.
  • Zhao, X., He, F., Zhang, X. K., Shi, Y., & Duan, C. Q. (2022). Impact of three phenolic copigments on the stability and color evolution of five basic anthocyanins in model wine systems. Food Chemistry, 375, 131670.
  • Zhu, Y., Chen, H., Lou, L., Chen, Y., Ye, X., & Chen, J. (2020). Copigmentation effect of three phenolic acids on color and thermal stability of Chinese bayberry anthocyanins. Food Science & Nutrition, 8(7), 3234-3242.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Şeyma Nur Demirci 0000-0002-6127-4174

Banu Metin 0000-0002-3203-0058

Mehmet Demirci 0000-0002-4394-9852

Early Pub Date July 26, 2022
Publication Date August 31, 2022
Published in Issue Year 2022 Issue: 38

Cite

APA Demirci, Ş. N., Metin, B., & Demirci, M. (2022). Antosiyanin Stabilite Artırma Metotları: Fenolik Kopigmentasyonu. Avrupa Bilim Ve Teknoloji Dergisi(38), 276-281. https://doi.org/10.31590/ejosat.1097890

Cited By