Research Article
BibTex RIS Cite

Farklı Derin Ötektik Çözücülerin pH ve Elektriksel İletkenlik Değerlerinin Sıcaklık ile Değişimi

Year 2022, Issue: 38, 240 - 246, 31.08.2022
https://doi.org/10.31590/ejosat.1115113

Abstract

Bu çalışmada, gıda proseslerinde kullanılması en muhtemel 6 farklı derin ötektik çözücünün (kolin klorür-asetik asit, kolin klorür-üre, kolin klorür-sitrik asit, kolin klorür-gliserol, kolin klorür-laktik asit ve gliserol-sitrik asit) pH ve elektriksel iletkenlik değerlerinin sıcaklık (25 °C, 50 °C ve 75 °C) ile değişimi araştırılmıştır. Gliserol-sitrik asit kombinasyonu için molar oran 1:1 olarak kullanılmış olup, diğer çözücüler için molar oran 1:2 olarak uygulanmıştır. Ayrıca tüm çözücülere kütlece %30 oranında su eklenmiştir. Sonuç olarak, pH değerlerinin sıcaklık ile değişiminin hidrojen bağı donörü türüne bağlı olarak değiştiği, elektriksel iletkenlik değerlerinin ise sıcaklık artışı ile doğru orantılı olarak arttığı görülmüştür. Her iki değer için de doğrusal model uyumluluğunun yüksek olduğu görülmüştür. pH ve elektriksel iletkenlik değerlerinin de birbirleri ile ilişkileri incelendiğinde ise asit bazlı hidrojen bağ donörleri ile oluşturulan derin ötektik çözücü kombinasyonlarının pozitif, diğer kombinasyonların ise negatif bir korelasyon gösterdiği görülmüştür. Son olarak, aktivasyon enerjileri incelendiğinde ise pH için hidrojen bağ donörü olarak sitrik asit, elektriksel iletkenlik için ise ürenin kullanıldığı kombinasyonlar en yüksek değer almıştır.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Abbott, A.P., Dalrymple, I., Endres, F., & MacFarlane, D.R., (2008). Chapter 1. Why use Ionic Liquids for Electrodeposition?, In “Electrodeposition from Ionic Liquids”; Abbott, A.P., Endres, F., MacFarlane, D.R., Eds., Wiley-VCH, Weinheim, pp 1-2.
  • Acquarone, C., Buera, P., & Elizalde, B. (2007). Pattern of pH and electrical conductivity upon honey dilution as a complementary tool for discriminating geographical origin of honeys. Food chemistry, 101(2), 695-703.
  • Aghbashlo, M., Kianmehr, M. H., & Hassan‐Beygi, S. R. (2010). Drying and rehydration characteristics of sour cherry (Prunus cerasus L.). Journal of food processing and preservation, 34(3), 351-365.
  • Alcalde, R., Gutiérrez, A., Atilhan, M., & Aparicio, S. (2019). An experimental and theoretical investigation of the physicochemical properties on choline chloride–Lactic acid based natural deep eutectic solvent (NADES). Journal of Molecular Liquids, 290, 110916.
  • Ariç Sürme, S. (2021). Ohmik Isıtma İşleminin Sütün Evaporasyonunda Kullanımı, Elektriksel İletkenlik, Performans Analizi ve Bazı Kalite Özelliklerinin Belirlenmesi, Munzur Üniversitesi, Lisansüstü Eğitim Enstitüsü, Yüksek Lisans Tezi, 59 s.
  • Bahadori, L., Chakrabarti, M. H., Mjalli, F. S., AlNashef, I. M., Manan, N. S. A., & Hashim, M. A. (2013). Physicochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems. Electrochimica Acta, 113, 205-211.
  • Banti, M. (2020). Review on Electrical Conductivity in Food, the Case in Fruits and Vegetables. vol, 4, 80-89.
  • Byrne, C. E., Troy, D. J., & Buckley, D. J. (2000). Postmortem changes in muscle electrical properties of bovine M. longissimus dorsi and their relationship to meat quality attributes and pH fall. Meat Science, 54(1), 23-34.
  • Ekanem, E. O., & Achinewhu, S. C. (2006). Mortality and quality indices of live west african hard‐shell clams (Galatea paradoxa born) during wet and dry postharvest storage. Journal of food processing and preservation, 30(3), 247-257.
  • El Achkar, T., Fourmentin, S., & Greige-Gerges, H. (2019). Deep eutectic solvents: An overview on their interactions with water and biochemical compounds. Journal of Molecular Liquids, 288, 111028.
  • Gachuz, E. J., Castillo-Santillán, M., Juarez-Moreno, K., Maya-Cornejo, J., Martinez-Richa, A., Andrio, A., ... & Mota-Morales, J. D. (2020). Electrical conductivity of an all-natural and biocompatible semi-interpenetrating polymer network containing a deep eutectic solvent. Green Chemistry, 22(17), 5785-5797.
  • Hayyan, A., Mjalli, F. S., AlNashef, I. M., Al-Wahaibi, T., Al-Wahaibi, Y. M., & Hashim, M. A. (2012). Fruit sugar-based deep eutectic solvents and their physical properties. Thermochimica Acta, 541, 70-75.
  • Hayyan, A., Mjalli, F. S., AlNashef, I. M., Al-Wahaibi, Y. M., Al-Wahaibi, T., & Hashim, M. A. (2013). Glucose-based deep eutectic solvents: Physical properties. Journal of Molecular Liquids, 178, 137-141.
  • Jablonsky, M., Majova, V., Ondrigova, K., & Sima, J. (2019). Preparation and characterization of physicochemical properties and application of novel ternary deep eutectic solvents. Cellulose, 26(5), 3031-3045.
  • Kareem, M. A., Mjalli, F. S., Hashim, M. A., & AlNashef, I. M. (2010). Phosphonium-based ionic liquids analogues and their physical properties. Journal of Chemical & Engineering Data, 55(11), 4632-4637.
  • Lapeña, D., Lomba, L., Artal, M., Lafuente, C., & Giner, B. (2019). Thermophysical characterization of the deep eutectic solvent choline chloride: ethylene glycol and one of its mixtures with water. Fluid Phase Equilibria, 492, 1-9.
  • Marcus, Y. (2019). Deep Eutectic Solvents. Chapter 1: Introduction, Springer Nature Switzerland AG, ISBN 9783030006075.
  • Meng, Z., Zhao, J., Duan, H., Guan, Y., & Zhao, L. (2018). Green and efficient extraction of four bioactive flavonoids from Pollen Typhae by ultrasound-assisted deep eutectic solvents extraction. Journal of Pharmaceutical and Biomedical Analysis, 161, 246-253.
  • Mjalli, F. S., & Ahmed, O. U. (2016). Characteristics and intermolecular interaction of eutectic binary mixtures: Reline and Glyceline. Korean Journal of Chemical Engineering, 33(1), 337-343.
  • Pesso, T. & Piva, S. (2009). Thermo-fluid analysis of a cylindrical collinear ohmic sterilizer in laminar flow Proceedings of ITP2009 Interdisciplinary Transport Phenomena VI: Fluid, Thermal, Biological, Materials and Space Sciences, Volterra, Italy.
  • Ratkowsky, D. A., Olley, J., McMeekin, T. A., & Ball, A. (1982). Relationship between temperature and growth rate of bacterial cultures. Journal of bacteriology, 149(1), 1-5.
  • Sabanci, S. (2021). A study on electrical conductivity and performance evaluation of ohmic evaporation process of grape juice. Journal of Food Processing and Preservation, 45(5), e15487.
  • Saputra, R., Walvekar, R., Khalid, M., & Mubarak, N. M. (2020). Synthesis and thermophysical properties of ethylammonium chloride-glycerol-ZnCl2 ternary deep eutectic solvent. Journal of Molecular Liquids, 310, 113232.
  • Skulcova, A., Russ, A., Jablonsky, M., & Sima, J. (2018). The pH behavior of seventeen deep eutectic solvents. BioResources, 13(3), 5042-5051.
  • Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical reviews, 114(21), 11060-11082.
  • Taysun, M. B., Sert, E., & Atalay, F. S. (2017). Effect of hydrogen bond donor on the physical properties of benzyltriethylammonium chloride based deep eutectic solvents and their usage in 2-ethyl-hexyl acetate synthesis as a catalyst. Journal of Chemical & Engineering Data, 62(4), 1173-1181.
  • Varghese, K. S., Pandey, M. C., Radhakrishna, K., & Bawa, A. S. (2014). Technology, applications and modelling of ohmic heating: a review. Journal of food science and technology, 51(10), 2304-2317.
  • Vilková, M., Płotka-Wasylka, J., & Andruch, V. (2020). The role of water in deep eutectic solvent-base extraction. Journal of Molecular Liquids, 304, 112747.
  • Xu, G. C., Ding, J. C., Han, R. Z., Dong, J. J., & Ni, Y. (2016). Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresource technology, 203, 364-369.
  • Yao, L., Luo, Y., Sun, Y., & Shen, H. (2011). Establishment of kinetic models based on electrical conductivity and freshness indictors for the forecasting of crucian carp (Carassius carassius) freshness. Journal of Food Engineering, 107(2), 147-151.
  • Zainal-Abidin, M. H., Hayyan, M., Hayyan, A., & Jayakumar, N. S. (2017). New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Analytica Chimica Acta, 979, 1-23.
  • Zhang, L., & Wang, M. (2017). Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. International Journal of Biological Macromolecules, 95, 675-681.
  • Zhang, Q., Vigier, K. D. O., Royer, S., & Jérôme, F. (2012). Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews, 41(21), 7108-7146.
  • Zhong, M., Tang, Q. F., Zhu, Y. W., Chen, X. Y., & Zhang, Z. J. (2020). An alternative electrolyte of deep eutectic solvent by choline chloride and ethylene glycol for wide temperature range supercapacitors. Journal of Power Sources, 452, 227847.

Variation of pH and Electrical Conductivity Values of Different Deep Eutectic Solvents with Temperature

Year 2022, Issue: 38, 240 - 246, 31.08.2022
https://doi.org/10.31590/ejosat.1115113

Abstract

In this study, the variation of pH and electrical conductivity values of 6 different deep eutectic solvents (choline chloride-acetic acid, choline chloride-urea, choline chloride-citric acid, choline chloride-glycerol, choline chloride-lactic acid, and glycerol-citric acid) most likely to be used in food processes with temperature (25 °C, 50 °C and 75 °C) were investigated. The molar ratio was used as 1:1 for the glycerol-citric acid combination, and the molar ratio was applied as 1:2 for other solvents. Besides, 30% water by mass was added to all solvents. As a result, it was observed that the variation of pH values with temperature changed depending on the hydrogen bond donor type, while the electrical conductivity values increased in direct proportion to the increase in temperature. It was seen that linear model compatibility was high for both values. When the relations between pH and electrical conductivity values were examined, it was seen that deep eutectic solvent combinations formed with acid-based hydrogen bond donors showed a positive correlation, while other combinations showed a negative correlation. Finally, when the activation energies are examined, the combinations using citric acid as hydrogen bond donor for pH and urea for electrical conductivity have the highest value

Project Number

-

References

  • Abbott, A.P., Dalrymple, I., Endres, F., & MacFarlane, D.R., (2008). Chapter 1. Why use Ionic Liquids for Electrodeposition?, In “Electrodeposition from Ionic Liquids”; Abbott, A.P., Endres, F., MacFarlane, D.R., Eds., Wiley-VCH, Weinheim, pp 1-2.
  • Acquarone, C., Buera, P., & Elizalde, B. (2007). Pattern of pH and electrical conductivity upon honey dilution as a complementary tool for discriminating geographical origin of honeys. Food chemistry, 101(2), 695-703.
  • Aghbashlo, M., Kianmehr, M. H., & Hassan‐Beygi, S. R. (2010). Drying and rehydration characteristics of sour cherry (Prunus cerasus L.). Journal of food processing and preservation, 34(3), 351-365.
  • Alcalde, R., Gutiérrez, A., Atilhan, M., & Aparicio, S. (2019). An experimental and theoretical investigation of the physicochemical properties on choline chloride–Lactic acid based natural deep eutectic solvent (NADES). Journal of Molecular Liquids, 290, 110916.
  • Ariç Sürme, S. (2021). Ohmik Isıtma İşleminin Sütün Evaporasyonunda Kullanımı, Elektriksel İletkenlik, Performans Analizi ve Bazı Kalite Özelliklerinin Belirlenmesi, Munzur Üniversitesi, Lisansüstü Eğitim Enstitüsü, Yüksek Lisans Tezi, 59 s.
  • Bahadori, L., Chakrabarti, M. H., Mjalli, F. S., AlNashef, I. M., Manan, N. S. A., & Hashim, M. A. (2013). Physicochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems. Electrochimica Acta, 113, 205-211.
  • Banti, M. (2020). Review on Electrical Conductivity in Food, the Case in Fruits and Vegetables. vol, 4, 80-89.
  • Byrne, C. E., Troy, D. J., & Buckley, D. J. (2000). Postmortem changes in muscle electrical properties of bovine M. longissimus dorsi and their relationship to meat quality attributes and pH fall. Meat Science, 54(1), 23-34.
  • Ekanem, E. O., & Achinewhu, S. C. (2006). Mortality and quality indices of live west african hard‐shell clams (Galatea paradoxa born) during wet and dry postharvest storage. Journal of food processing and preservation, 30(3), 247-257.
  • El Achkar, T., Fourmentin, S., & Greige-Gerges, H. (2019). Deep eutectic solvents: An overview on their interactions with water and biochemical compounds. Journal of Molecular Liquids, 288, 111028.
  • Gachuz, E. J., Castillo-Santillán, M., Juarez-Moreno, K., Maya-Cornejo, J., Martinez-Richa, A., Andrio, A., ... & Mota-Morales, J. D. (2020). Electrical conductivity of an all-natural and biocompatible semi-interpenetrating polymer network containing a deep eutectic solvent. Green Chemistry, 22(17), 5785-5797.
  • Hayyan, A., Mjalli, F. S., AlNashef, I. M., Al-Wahaibi, T., Al-Wahaibi, Y. M., & Hashim, M. A. (2012). Fruit sugar-based deep eutectic solvents and their physical properties. Thermochimica Acta, 541, 70-75.
  • Hayyan, A., Mjalli, F. S., AlNashef, I. M., Al-Wahaibi, Y. M., Al-Wahaibi, T., & Hashim, M. A. (2013). Glucose-based deep eutectic solvents: Physical properties. Journal of Molecular Liquids, 178, 137-141.
  • Jablonsky, M., Majova, V., Ondrigova, K., & Sima, J. (2019). Preparation and characterization of physicochemical properties and application of novel ternary deep eutectic solvents. Cellulose, 26(5), 3031-3045.
  • Kareem, M. A., Mjalli, F. S., Hashim, M. A., & AlNashef, I. M. (2010). Phosphonium-based ionic liquids analogues and their physical properties. Journal of Chemical & Engineering Data, 55(11), 4632-4637.
  • Lapeña, D., Lomba, L., Artal, M., Lafuente, C., & Giner, B. (2019). Thermophysical characterization of the deep eutectic solvent choline chloride: ethylene glycol and one of its mixtures with water. Fluid Phase Equilibria, 492, 1-9.
  • Marcus, Y. (2019). Deep Eutectic Solvents. Chapter 1: Introduction, Springer Nature Switzerland AG, ISBN 9783030006075.
  • Meng, Z., Zhao, J., Duan, H., Guan, Y., & Zhao, L. (2018). Green and efficient extraction of four bioactive flavonoids from Pollen Typhae by ultrasound-assisted deep eutectic solvents extraction. Journal of Pharmaceutical and Biomedical Analysis, 161, 246-253.
  • Mjalli, F. S., & Ahmed, O. U. (2016). Characteristics and intermolecular interaction of eutectic binary mixtures: Reline and Glyceline. Korean Journal of Chemical Engineering, 33(1), 337-343.
  • Pesso, T. & Piva, S. (2009). Thermo-fluid analysis of a cylindrical collinear ohmic sterilizer in laminar flow Proceedings of ITP2009 Interdisciplinary Transport Phenomena VI: Fluid, Thermal, Biological, Materials and Space Sciences, Volterra, Italy.
  • Ratkowsky, D. A., Olley, J., McMeekin, T. A., & Ball, A. (1982). Relationship between temperature and growth rate of bacterial cultures. Journal of bacteriology, 149(1), 1-5.
  • Sabanci, S. (2021). A study on electrical conductivity and performance evaluation of ohmic evaporation process of grape juice. Journal of Food Processing and Preservation, 45(5), e15487.
  • Saputra, R., Walvekar, R., Khalid, M., & Mubarak, N. M. (2020). Synthesis and thermophysical properties of ethylammonium chloride-glycerol-ZnCl2 ternary deep eutectic solvent. Journal of Molecular Liquids, 310, 113232.
  • Skulcova, A., Russ, A., Jablonsky, M., & Sima, J. (2018). The pH behavior of seventeen deep eutectic solvents. BioResources, 13(3), 5042-5051.
  • Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep eutectic solvents (DESs) and their applications. Chemical reviews, 114(21), 11060-11082.
  • Taysun, M. B., Sert, E., & Atalay, F. S. (2017). Effect of hydrogen bond donor on the physical properties of benzyltriethylammonium chloride based deep eutectic solvents and their usage in 2-ethyl-hexyl acetate synthesis as a catalyst. Journal of Chemical & Engineering Data, 62(4), 1173-1181.
  • Varghese, K. S., Pandey, M. C., Radhakrishna, K., & Bawa, A. S. (2014). Technology, applications and modelling of ohmic heating: a review. Journal of food science and technology, 51(10), 2304-2317.
  • Vilková, M., Płotka-Wasylka, J., & Andruch, V. (2020). The role of water in deep eutectic solvent-base extraction. Journal of Molecular Liquids, 304, 112747.
  • Xu, G. C., Ding, J. C., Han, R. Z., Dong, J. J., & Ni, Y. (2016). Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresource technology, 203, 364-369.
  • Yao, L., Luo, Y., Sun, Y., & Shen, H. (2011). Establishment of kinetic models based on electrical conductivity and freshness indictors for the forecasting of crucian carp (Carassius carassius) freshness. Journal of Food Engineering, 107(2), 147-151.
  • Zainal-Abidin, M. H., Hayyan, M., Hayyan, A., & Jayakumar, N. S. (2017). New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Analytica Chimica Acta, 979, 1-23.
  • Zhang, L., & Wang, M. (2017). Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. International Journal of Biological Macromolecules, 95, 675-681.
  • Zhang, Q., Vigier, K. D. O., Royer, S., & Jérôme, F. (2012). Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews, 41(21), 7108-7146.
  • Zhong, M., Tang, Q. F., Zhu, Y. W., Chen, X. Y., & Zhang, Z. J. (2020). An alternative electrolyte of deep eutectic solvent by choline chloride and ethylene glycol for wide temperature range supercapacitors. Journal of Power Sources, 452, 227847.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Naciye Kutlu Kantar 0000-0002-4075-8823

Project Number -
Early Pub Date July 26, 2022
Publication Date August 31, 2022
Published in Issue Year 2022 Issue: 38

Cite

APA Kutlu Kantar, N. (2022). Farklı Derin Ötektik Çözücülerin pH ve Elektriksel İletkenlik Değerlerinin Sıcaklık ile Değişimi. Avrupa Bilim Ve Teknoloji Dergisi(38), 240-246. https://doi.org/10.31590/ejosat.1115113