Research Article
BibTex RIS Cite

(4+1)-boyutlu Fokas denkleminin etkili bir integrasyon tekniği ile tek dalga çözümleri

Year 2023, Issue: 46, 54 - 63, 31.01.2023
https://doi.org/10.31590/ejosat.1196618

Abstract

Bu çalışmada yüksek boyutlu problemler içerisinde kendine özgü bir öneme sahip olan integrrallenebilir nonlineer (4+1)-boyutlu Fokas denkleminin soliton çözümleri son zamanlarda literature kazandırılmış olan new Kudryashov metodu ile incelenmektedir. Yapılan inceleme çerçevesinde (4+1)-boyutlu Fokas denkleminin temel soliton çözümlerinin elde edilmesine ek olarak, yöntemin yüksek boyutlu problemler için de etkin olarak kolaylıkla kullanılabileceği, aynı zamanda güvenilir olduğu da gösterilmektedir.
Çalışmada elde edilen soliton çözümlerine ait grafiklerin 3D, 2D ve contour sunumları yapılarak ayrıca gerekli açıklamalar yapılmıştır.

References

  • Birzu, Gabriel & Hallatschek, Oskar & Korolev, Kirill. (2018), Fluctuations uncover a distinct class of traveling waves. Proceedings of the National Academy of Sciences. 115. 201715737. 10.1073/pnas.1715737115.
  • Cruywagen, Gerhard & Maini, Philip & Murray, J. (1994), Travelling waves in a tissue interaction mode for skin pattern formation. Journal of mathematical biology. 33. 193-210. 10.1007/BF00160179.
  • Wang X, Akram G, Sadaf M, Mariyam H, Abbas M. (2022), Soliton Solution of the Peyrard–Bishop–Dauxois Model of DNA Dynamics with M-Truncated and β-Fractional Derivatives Using Kudryashov’s R Function Method. Fractal and Fractional.;6(10):616. https://doi.org/10.3390/fractalfract6100616.
  • Syrenova TE, Beletsky AB, Ratovsky KG, Tolstikov MV, Vasilyev RV. (2022), Morphology of Traveling Wave Disturbances Recorded in Eastern Siberia in 630 nm Atomic Oxygen Emission.Atmosphere;13(2):198. https://doi.org/10.3390/atmos13020198.
  • Bakhoum, Ezzat & Toma, Cristian. (2010). Mathematical Transform of Traveling-Wave Equations and Phase Aspects of Quantum Interaction. Mathematical Problems in Engineering. 2010. 10.1155/2010/695208.
  • Muhammad Naveed Rafiq, Abdul Majeed, Mustafa Inc, Mohsin Kamran(2022) , New traveling wave solutions for space-time fractional modified equal width equation with beta derivative, Physics Letters A, Volume 446, 128281, ISSN0375-9601, https://doi.org/10.1016/j.physleta.2022.128281.
  • Muslum Ozisik (2022), On the optical soliton solution of the (1+1)− dimensional perturbed NLSE in optical nano-fibers, Optik, Volume 250, Part 1, 168233, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2021.168233.
  • Muslum Ozisik (2022) , Novel (2+1) and (3+1) forms of the Biswas–Milovic equation and optical soliton solutions via two efficient techniques, Optik, Volume 269, 169798, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2022.169798.
  • A. Secer (2022), Stochastic optical solitons with multiplicative white noise via Itô calculus, Optik, Volume 268, 169831,ISSN0030-4026, https://doi.org/10.1016/j.ijleo.2022.169831.
  • Muslum Ozisik, Aydin Secer, Mustafa Bayram (2022), On the examination of optical soliton pulses of Manakov system with auxiliary equation technique, Optik, Volume 268, 169800,ISSN0030-4026, https://doi.org/10.1016/j.ijleo.2022.169800.
  • Ozisik, M., Secer, A., Bayram, M. et al (2022). On the analytical optical soliton solutions of perturbed Radhakrishnan–Kundu–Lakshmanan model with Kerr law nonlinearity. Opt Quant Electron 54, 371 .https://doi.org/10.1007/s11082-022-03795-5.
  • Kudryashov, Nikolay (2021). Optical solitons of the Chen-Lee-Liu equation with arbitrary refractive index. Optik. 247. 167935. 10.1016/j.ijleo.2021.167935.
  • Arnous, Ahmed (2021). Optical solitons with Biswas–Milovic equation in magneto-optic waveguide having Kudryashov’s law of refractive index. Optik. 247. 167987. 10.1016/j.ijleo.2021.167987.
  • Muslum Ozisik, Aydin Secer, Mustafa Bayram (2022), Dispersive optical solitons of Biswas–Arshed equation with a couple of novel approaches, Optik, Volume 265, 169547, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2022.169547.
  • Ismail Onder, Aydin Secer, Muslum Ozisik, Mustafa Bayram (2022), On the optical soliton solutions of Kundu–Mukherjee–Naskar equation via two different analytical methods, Optik, Volume 257, 168761, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2022.168761.
  • Triki, Houria & Jovanoski, Zlatko & Biswas, Anjan. (2014). Solitary Waves, Shock Waves and Singular Solitons of the Generalized Ostrovsky-Benjamin-Bona-Mahoney Equation. Applied Mathematics & Information Sciences. 8. 113-116. 10.12785/amis/080113.
  • Biswas, Anjan & Zerrad, Essaid. (2008). Soliton Perturbation Theory for the Gardner Equation. Advanced Studies in Theoretical Physics. 2.
  • Elsayed M.E. Zayed, Mohamed E.M. Alngar, Reham M.A. Shohib, Anjan Biswas, Houria Triki, Yakup Yıldırım, Ali S. Alshomrani, Hashim M. Alshehri (2022), Cubic–quartic optical solitons in birefringent fibers with Sasa–Satsuma equation, Optik, Volume 261, 169230, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2022.169230.
  • Elsayed M.E. Zayed, Reham M.A. Shohib, Mohamed E.M. Alngar, Anjan Biswas, Luminita Moraru, Salam Khan, Yakup Yıldırım, Hashim M. Alshehri, Milivoj R. Belic (2022), Dispersive optical solitons with Schrödinger–Hirota model having multiplicative white noise via Itô Calculus, Physics Letters A, Volume 445, 128268, ISSN 0375-9601, https://doi.org/10.1016/j.physleta.2022.128268.
  • Anjan Biswas, Yakup Yildirim, Emrullah Yasar, Qin Zhou, Ali Saleh Alshomrani, Seithuti P. Moshokoa, Milivoj Belic (2018), Dispersive optical solitons with Schrödinger–Hirota model by trial equation method, Optik, Volume 162, , Pages 35-41,ISSN0030-4026, https://doi.org/10.1016/j.ijleo.2018.02.058.
  • Biswas, Anjan. (2004). Theory of non-Kerr law solitons. Applied Mathematics and Computation. 153. 369-385. 10.1016/S0096-3003(03)00638-6.
  • Anjan Biswas, Mehmet Ekici, Abdullah Sonmezoglu, Mohammad Mirzazadeh, Qin Zhou, Ali Saleh Alshomrani, Seithuti P. Moshokoa, Milivoj Belic (2018), Optical solitons in parabolic law medium with weak non-local nonlinearity by extended trial function method, Optik, Volume 163, Pages56-61,ISSN0030-4026, https://doi.org/10.1016/j.ijleo.2018.02.103.
  • Khater, Mostafa & Chu, Yuming & Attia, Raghda & Inc, Mustafa & Lu, Dianchen & Gai, Xiao-Ling. (2020). Equation with Power-Law Nonlinearity. Advances in Mathematical Physics. 2020. 10. 10.1155/2020/5809289.
  • Muslum Ozisik, Melih Cinar, Aydin Secer, Mustafa Bayram (2022), Optical solitons with Kudryashov’s sextic power-law nonlinearity, Optik, Volume 261, 169202, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2022.169202.
  • Yildirim, Y & Biswas, A & Dakova-Mollova, Aneliya & Guggilla, P & Khan, Sabrin & Alshehri, H & Belić, Milivoj. (2021). Cubic-quartic optical solitons having quadratic-cubic nonlinearity by sine-Gordon equation approach. Ukrainian Journal of Physical Optics. 22. 255-269. 10.3116/16091833/22/4/255/2021.
  • Radhakrishnan, Rengaraj & Kundu, Anjan & Lakshmanan, M. (1999). Coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity: Integrability and soliton interaction in non-Kerr media. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. 60. 3314-23. 10.1103/PhysRevE.60.3314.
  • Ullah, Naeem & Rehman, Hamood & Asjad, Muhammad & Abdeljawad, Thabet. (2020). Highly dispersive optical solitons with cubic law and cubic-quintic-septic law nonlinearities. Results in Physics. 17. 10.1016/j.rinp.2020.103021.
  • Houria Triki, Abdul H. Kara, Anjan Biswas, Seithuti P. Moshokoa, Milivoj Belic (2016), Optical solitons and conservation laws with anti-cubic nonlinearity, Optik, Volume 127, Issue 24, Pages 12056-12062, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2016.09.122.
  • Elsayed M.E. Zayed, Reham M.A. Shohib, Mohamed E.M. Alngar, Anjan Biswas, Mir Asma, Mehmet Ekici, Seithuti P. Moshokoa, Abdullah Kamis Alzahrani, Milivoj R. Belic (2020), Solitons in magneto–optic waveguides with dual–power law nonlinearity, Physics Letters A, Volume 384, Issue 27, 126697,ISSN0375-9601, https://doi.org/10.1016/j.physleta.2020.126697.
  • Ekici, Mehmet & Sonmezoglu, Abdullah & Biswas, Anjan. (2021). Stationary optical solitons with Kudryashov’s laws of refractive index. Chaos, Solitons & Fractals. 151. 111226. 10.1016/j.chaos.2021.111226.
  • A.S. Fokas (2006)., Integrable nonlinear evolution partial differential equations in 4+2 and 3 + 1 dimensions, Phys. Rev. Lett. 96 (19) Article ID 190201.
  • Mohammed O. Al-Amr, Shoukry El-Ganaini (2017), New exact traveling wave solutions of the (4+1)-dimensional Fokas equation, Computers & Mathematics with Applications, Volume 74, Issue 6, Pages 1274-1287, ISSN 0898-1221, https://doi.org/10.1016/j.camwa.2017.06.020.
  • Shahzad Sarwar (2021), New soliton wave structures of nonlinear (4 + 1)-dimensional Fokas dynamical model by using different methods, Alexandria Engineering Journal, Volume 60, Issue 1, Pages 795-803, ISSN 1110-0168, https://doi.org/10.1016/j.aej.2020.10.009.
  • Cao, Yulei & He, Jingsong & Cheng, yi & Mihalache, Dumitru (2020), Reductions of the (4 + 1)-dimensional Fokas equation and their solutions. Nonlinear Dynamics. 10.1007/s11071-020-05485-x.
  • Khatri, H., Gautam, M.S. & Malik (2019), A. Localized and complex soliton solutions to the integrable (4+1)-dimensional Fokas equation. SN Appl. Sci. 1, 1070. https://doi.org/10.1007/s42452-019-1094-z.
  • Kumar, Sachin & Niwas, Monika & Osman, M. & Abdou, M. (2021). Abundant different types of exact-soliton solutions to the (4+1)-dimensional Fokas and (2+1)-dimensional Breaking soliton equations. Communications in Theoretical Physics. 73. 105007. 10.1088/1572-9494/ac11ee.
  • Tuluce Demiray, Seyma & Bulut, Hasan. (2018). A New Method for (4+1) Dimensional Fokas Equation. ITM Web of Conferences. 22. 01065. 10.1051/itmconf/20182201065.
  • Cesar A. Gomez, Hernan Garzon G., Juan C. Hernandez R. (2017), On exact solutions for (4+1)-dimensional Fokas equation with variable coefficients, Advanced Studies in Theoretical Physics, Vol. 11, no. 12, 765-771, https://doi.org/10.12988/astp.2017.71260.
  • Verma, P., Kaur, L. (2021), New Exact Solutions of the (4+1)-Dimensional Fokas Equation Via Extended Version of exp(−ψ(κ))-Expansion Method. Int. J. Appl. Comput. Math 7, 104. https://doi.org/10.1007/s40819-021-01051-0
  • Muslum Ozisik (2022), Aydin Secer, Mustafa Bayram, Huseyin Aydin, An encyclopedia of Kudryashov’s integrability approaches applicable to optoelectronic devices, Optik, Volume 265, 169499, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2022.169499.

Solitary wave solutions of the (4+1)-dimensional Fokas equation via an efficient integration technique

Year 2023, Issue: 46, 54 - 63, 31.01.2023
https://doi.org/10.31590/ejosat.1196618

Abstract

In this study, the soliton solutions of the integrable nonlinear (4+1)-dimensional Fokas equation, which has a unique importance in high-dimensional problems, are examined by the new Kudryashov method, which has recently been introduced into literature. In addition to obtaining the basic soliton solutions of the (4+1)-dimensional Fokas equation, it is showed that the method can be easily used effectively for high-dimensional problems and is also reliable. 3D, 2D and contour presentations of the graphs of the soliton solutions obtained in the study were made and the necessary explanations were also made.

References

  • Birzu, Gabriel & Hallatschek, Oskar & Korolev, Kirill. (2018), Fluctuations uncover a distinct class of traveling waves. Proceedings of the National Academy of Sciences. 115. 201715737. 10.1073/pnas.1715737115.
  • Cruywagen, Gerhard & Maini, Philip & Murray, J. (1994), Travelling waves in a tissue interaction mode for skin pattern formation. Journal of mathematical biology. 33. 193-210. 10.1007/BF00160179.
  • Wang X, Akram G, Sadaf M, Mariyam H, Abbas M. (2022), Soliton Solution of the Peyrard–Bishop–Dauxois Model of DNA Dynamics with M-Truncated and β-Fractional Derivatives Using Kudryashov’s R Function Method. Fractal and Fractional.;6(10):616. https://doi.org/10.3390/fractalfract6100616.
  • Syrenova TE, Beletsky AB, Ratovsky KG, Tolstikov MV, Vasilyev RV. (2022), Morphology of Traveling Wave Disturbances Recorded in Eastern Siberia in 630 nm Atomic Oxygen Emission.Atmosphere;13(2):198. https://doi.org/10.3390/atmos13020198.
  • Bakhoum, Ezzat & Toma, Cristian. (2010). Mathematical Transform of Traveling-Wave Equations and Phase Aspects of Quantum Interaction. Mathematical Problems in Engineering. 2010. 10.1155/2010/695208.
  • Muhammad Naveed Rafiq, Abdul Majeed, Mustafa Inc, Mohsin Kamran(2022) , New traveling wave solutions for space-time fractional modified equal width equation with beta derivative, Physics Letters A, Volume 446, 128281, ISSN0375-9601, https://doi.org/10.1016/j.physleta.2022.128281.
  • Muslum Ozisik (2022), On the optical soliton solution of the (1+1)− dimensional perturbed NLSE in optical nano-fibers, Optik, Volume 250, Part 1, 168233, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2021.168233.
  • Muslum Ozisik (2022) , Novel (2+1) and (3+1) forms of the Biswas–Milovic equation and optical soliton solutions via two efficient techniques, Optik, Volume 269, 169798, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2022.169798.
  • A. Secer (2022), Stochastic optical solitons with multiplicative white noise via Itô calculus, Optik, Volume 268, 169831,ISSN0030-4026, https://doi.org/10.1016/j.ijleo.2022.169831.
  • Muslum Ozisik, Aydin Secer, Mustafa Bayram (2022), On the examination of optical soliton pulses of Manakov system with auxiliary equation technique, Optik, Volume 268, 169800,ISSN0030-4026, https://doi.org/10.1016/j.ijleo.2022.169800.
  • Ozisik, M., Secer, A., Bayram, M. et al (2022). On the analytical optical soliton solutions of perturbed Radhakrishnan–Kundu–Lakshmanan model with Kerr law nonlinearity. Opt Quant Electron 54, 371 .https://doi.org/10.1007/s11082-022-03795-5.
  • Kudryashov, Nikolay (2021). Optical solitons of the Chen-Lee-Liu equation with arbitrary refractive index. Optik. 247. 167935. 10.1016/j.ijleo.2021.167935.
  • Arnous, Ahmed (2021). Optical solitons with Biswas–Milovic equation in magneto-optic waveguide having Kudryashov’s law of refractive index. Optik. 247. 167987. 10.1016/j.ijleo.2021.167987.
  • Muslum Ozisik, Aydin Secer, Mustafa Bayram (2022), Dispersive optical solitons of Biswas–Arshed equation with a couple of novel approaches, Optik, Volume 265, 169547, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2022.169547.
  • Ismail Onder, Aydin Secer, Muslum Ozisik, Mustafa Bayram (2022), On the optical soliton solutions of Kundu–Mukherjee–Naskar equation via two different analytical methods, Optik, Volume 257, 168761, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2022.168761.
  • Triki, Houria & Jovanoski, Zlatko & Biswas, Anjan. (2014). Solitary Waves, Shock Waves and Singular Solitons of the Generalized Ostrovsky-Benjamin-Bona-Mahoney Equation. Applied Mathematics & Information Sciences. 8. 113-116. 10.12785/amis/080113.
  • Biswas, Anjan & Zerrad, Essaid. (2008). Soliton Perturbation Theory for the Gardner Equation. Advanced Studies in Theoretical Physics. 2.
  • Elsayed M.E. Zayed, Mohamed E.M. Alngar, Reham M.A. Shohib, Anjan Biswas, Houria Triki, Yakup Yıldırım, Ali S. Alshomrani, Hashim M. Alshehri (2022), Cubic–quartic optical solitons in birefringent fibers with Sasa–Satsuma equation, Optik, Volume 261, 169230, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2022.169230.
  • Elsayed M.E. Zayed, Reham M.A. Shohib, Mohamed E.M. Alngar, Anjan Biswas, Luminita Moraru, Salam Khan, Yakup Yıldırım, Hashim M. Alshehri, Milivoj R. Belic (2022), Dispersive optical solitons with Schrödinger–Hirota model having multiplicative white noise via Itô Calculus, Physics Letters A, Volume 445, 128268, ISSN 0375-9601, https://doi.org/10.1016/j.physleta.2022.128268.
  • Anjan Biswas, Yakup Yildirim, Emrullah Yasar, Qin Zhou, Ali Saleh Alshomrani, Seithuti P. Moshokoa, Milivoj Belic (2018), Dispersive optical solitons with Schrödinger–Hirota model by trial equation method, Optik, Volume 162, , Pages 35-41,ISSN0030-4026, https://doi.org/10.1016/j.ijleo.2018.02.058.
  • Biswas, Anjan. (2004). Theory of non-Kerr law solitons. Applied Mathematics and Computation. 153. 369-385. 10.1016/S0096-3003(03)00638-6.
  • Anjan Biswas, Mehmet Ekici, Abdullah Sonmezoglu, Mohammad Mirzazadeh, Qin Zhou, Ali Saleh Alshomrani, Seithuti P. Moshokoa, Milivoj Belic (2018), Optical solitons in parabolic law medium with weak non-local nonlinearity by extended trial function method, Optik, Volume 163, Pages56-61,ISSN0030-4026, https://doi.org/10.1016/j.ijleo.2018.02.103.
  • Khater, Mostafa & Chu, Yuming & Attia, Raghda & Inc, Mustafa & Lu, Dianchen & Gai, Xiao-Ling. (2020). Equation with Power-Law Nonlinearity. Advances in Mathematical Physics. 2020. 10. 10.1155/2020/5809289.
  • Muslum Ozisik, Melih Cinar, Aydin Secer, Mustafa Bayram (2022), Optical solitons with Kudryashov’s sextic power-law nonlinearity, Optik, Volume 261, 169202, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2022.169202.
  • Yildirim, Y & Biswas, A & Dakova-Mollova, Aneliya & Guggilla, P & Khan, Sabrin & Alshehri, H & Belić, Milivoj. (2021). Cubic-quartic optical solitons having quadratic-cubic nonlinearity by sine-Gordon equation approach. Ukrainian Journal of Physical Optics. 22. 255-269. 10.3116/16091833/22/4/255/2021.
  • Radhakrishnan, Rengaraj & Kundu, Anjan & Lakshmanan, M. (1999). Coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity: Integrability and soliton interaction in non-Kerr media. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. 60. 3314-23. 10.1103/PhysRevE.60.3314.
  • Ullah, Naeem & Rehman, Hamood & Asjad, Muhammad & Abdeljawad, Thabet. (2020). Highly dispersive optical solitons with cubic law and cubic-quintic-septic law nonlinearities. Results in Physics. 17. 10.1016/j.rinp.2020.103021.
  • Houria Triki, Abdul H. Kara, Anjan Biswas, Seithuti P. Moshokoa, Milivoj Belic (2016), Optical solitons and conservation laws with anti-cubic nonlinearity, Optik, Volume 127, Issue 24, Pages 12056-12062, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2016.09.122.
  • Elsayed M.E. Zayed, Reham M.A. Shohib, Mohamed E.M. Alngar, Anjan Biswas, Mir Asma, Mehmet Ekici, Seithuti P. Moshokoa, Abdullah Kamis Alzahrani, Milivoj R. Belic (2020), Solitons in magneto–optic waveguides with dual–power law nonlinearity, Physics Letters A, Volume 384, Issue 27, 126697,ISSN0375-9601, https://doi.org/10.1016/j.physleta.2020.126697.
  • Ekici, Mehmet & Sonmezoglu, Abdullah & Biswas, Anjan. (2021). Stationary optical solitons with Kudryashov’s laws of refractive index. Chaos, Solitons & Fractals. 151. 111226. 10.1016/j.chaos.2021.111226.
  • A.S. Fokas (2006)., Integrable nonlinear evolution partial differential equations in 4+2 and 3 + 1 dimensions, Phys. Rev. Lett. 96 (19) Article ID 190201.
  • Mohammed O. Al-Amr, Shoukry El-Ganaini (2017), New exact traveling wave solutions of the (4+1)-dimensional Fokas equation, Computers & Mathematics with Applications, Volume 74, Issue 6, Pages 1274-1287, ISSN 0898-1221, https://doi.org/10.1016/j.camwa.2017.06.020.
  • Shahzad Sarwar (2021), New soliton wave structures of nonlinear (4 + 1)-dimensional Fokas dynamical model by using different methods, Alexandria Engineering Journal, Volume 60, Issue 1, Pages 795-803, ISSN 1110-0168, https://doi.org/10.1016/j.aej.2020.10.009.
  • Cao, Yulei & He, Jingsong & Cheng, yi & Mihalache, Dumitru (2020), Reductions of the (4 + 1)-dimensional Fokas equation and their solutions. Nonlinear Dynamics. 10.1007/s11071-020-05485-x.
  • Khatri, H., Gautam, M.S. & Malik (2019), A. Localized and complex soliton solutions to the integrable (4+1)-dimensional Fokas equation. SN Appl. Sci. 1, 1070. https://doi.org/10.1007/s42452-019-1094-z.
  • Kumar, Sachin & Niwas, Monika & Osman, M. & Abdou, M. (2021). Abundant different types of exact-soliton solutions to the (4+1)-dimensional Fokas and (2+1)-dimensional Breaking soliton equations. Communications in Theoretical Physics. 73. 105007. 10.1088/1572-9494/ac11ee.
  • Tuluce Demiray, Seyma & Bulut, Hasan. (2018). A New Method for (4+1) Dimensional Fokas Equation. ITM Web of Conferences. 22. 01065. 10.1051/itmconf/20182201065.
  • Cesar A. Gomez, Hernan Garzon G., Juan C. Hernandez R. (2017), On exact solutions for (4+1)-dimensional Fokas equation with variable coefficients, Advanced Studies in Theoretical Physics, Vol. 11, no. 12, 765-771, https://doi.org/10.12988/astp.2017.71260.
  • Verma, P., Kaur, L. (2021), New Exact Solutions of the (4+1)-Dimensional Fokas Equation Via Extended Version of exp(−ψ(κ))-Expansion Method. Int. J. Appl. Comput. Math 7, 104. https://doi.org/10.1007/s40819-021-01051-0
  • Muslum Ozisik (2022), Aydin Secer, Mustafa Bayram, Huseyin Aydin, An encyclopedia of Kudryashov’s integrability approaches applicable to optoelectronic devices, Optik, Volume 265, 169499, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2022.169499.
There are 40 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Pınar Albayrak 0000-0002-7973-3500

Early Pub Date January 31, 2023
Publication Date January 31, 2023
Published in Issue Year 2023 Issue: 46

Cite

APA Albayrak, P. (2023). Solitary wave solutions of the (4+1)-dimensional Fokas equation via an efficient integration technique. Avrupa Bilim Ve Teknoloji Dergisi(46), 54-63. https://doi.org/10.31590/ejosat.1196618