Research Article
BibTex RIS Cite
Year 2020, Volume: 10 Issue: 1, 173 - 183, 01.06.2020
https://doi.org/10.36222/ejt.697601

Abstract

References

  • Referans33 Liu, J., Chang, L., Liu, H., Li, Y., Yang, H. and Ruan, J. (2017). Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material. Materials Science and Engineering: C, 71, 512-519.
  • Referans36 Ji, X., Wang, Q., Yin, F., Cui, C., Ji, P. and Hao, G. (2018). Fabrication and properties of novel porous CuAlMn shape memory alloys and polymer/CuAlMn composites. Composites Part A: Applied Science and Manufacturing, 107, 21-30.

EFFECT OF WC REINFORCED ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF CUALMN ALLOYS PRODUCED BY HOT PRESSING METHOD

Year 2020, Volume: 10 Issue: 1, 173 - 183, 01.06.2020
https://doi.org/10.36222/ejt.697601

Abstract

In this study, the effect of WC reinforcing particles on the microstructure and mechanical properties of CuAlMn and CuAlMn-WC alloy produced by powder metallurgy method was investigated by adding 5 %, 10 % and 15 % by volume WC to CuAlMn alloy. Cu, Al, Mn and WC powders of approximately 99.9 % purity with a grain size of 325 mesh were used in the production of the alloys. The samples were produced by hot pressing method at 900 ℃ temperatures under 35 MPa pressure for 6 minutes. Microstructure, phase formation, hardness and corrosion properties of the samples were investigated in detail. Scanning electron microscopy (SEM) was used for microstructure analysis and X-ray diffractogram (XRD) was used for phase formation detection. The hardness measurements of the samples were measured by microhardness measuring device. The corrosion tests were performed potentiodynamic polarization curves of the composite materials in 3.5% NaCl solution. As a result, it has been determined that the mechanical properties of WC reinforcing particles added to CuAlMn matrix increase with increasing volume ratio.

References

  • Referans33 Liu, J., Chang, L., Liu, H., Li, Y., Yang, H. and Ruan, J. (2017). Microstructure, mechanical behavior and biocompatibility of powder metallurgy Nb-Ti-Ta alloys as biomedical material. Materials Science and Engineering: C, 71, 512-519.
  • Referans36 Ji, X., Wang, Q., Yin, F., Cui, C., Ji, P. and Hao, G. (2018). Fabrication and properties of novel porous CuAlMn shape memory alloys and polymer/CuAlMn composites. Composites Part A: Applied Science and Manufacturing, 107, 21-30.
There are 2 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Article
Authors

Tayfun Çetin 0000-0001-8060-344X

Mehmet Akkaş 0000-0002-0359-4743

Publication Date June 1, 2020
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite

APA Çetin, T., & Akkaş, M. (2020). EFFECT OF WC REINFORCED ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF CUALMN ALLOYS PRODUCED BY HOT PRESSING METHOD. European Journal of Technique (EJT), 10(1), 173-183. https://doi.org/10.36222/ejt.697601

All articles published by EJT are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı