Research Article
BibTex RIS Cite
Year 2022, Volume: 15 Issue: 2, 471 - 474, 31.08.2022
https://doi.org/10.18185/erzifbed.1083173

Abstract

References

  • Breaz S., Călugăreanu G. G., Danchev P. and Micu T. 2013. “Nil-clean matrix rings”, Linear Algebra Appl., 439 (10), 3115–3119.
  • Diesl A. J. 2013., “Nil clean rings”, J. Algebra, 383, 197–211.
  • Kosan M. T., Lee T-K. and Zhou Y. 2014. “When is every matrix over a division ring a sum of an idempotent and a nilpotent?”, Linear Algebra Appl., 450, 7–12.
  • Kosan T., Wang Z. and Zhou Y. 2016. “Nil-clean and strongly nil-clean rings”, J. Pure Appl. Algebra, 220 (2), 633–646.
  • Nicholson W. K. 1977. “Lifting idempotents and exchange rings”, Trans. Amer. Math. Soc., 229, 269-278.
  • Matczuk J. (2017), “Conjugate (nil) clean rings and Köthe’s problem”, J. Algebra Appl., 16 (4), Article 1750073. doi:10.1142/S0219498817500736
  • Sahinkaya S., Tang G. and Zhou Y. 2017. “Nil-clean group rings”, J. Algebra Appl., 16 (7), (2017), Article 1750135. doi.org:10.1142/S0219498817501353
  • Tang G., Su H. and Yuan P. 2021. “Quasi-clean rings and strongly quasi-clean rings”, Commun. Contemp. Math.. doi.org:10.1142/S0219199721500796
  • Zhou Z. 2021. “A multiplicative dual of nil-clean rings”, Canadian Mathematical Bulletin, 1-5. doi:10.4153/S0008439521000059

A Multiplicative Dual Nil Q-Clean Rings

Year 2022, Volume: 15 Issue: 2, 471 - 474, 31.08.2022
https://doi.org/10.18185/erzifbed.1083173

Abstract

In this paper our goal to thoroughly determine the rings in which each non-unit element is a product of a nilpotent and a quasi-idempotent.

References

  • Breaz S., Călugăreanu G. G., Danchev P. and Micu T. 2013. “Nil-clean matrix rings”, Linear Algebra Appl., 439 (10), 3115–3119.
  • Diesl A. J. 2013., “Nil clean rings”, J. Algebra, 383, 197–211.
  • Kosan M. T., Lee T-K. and Zhou Y. 2014. “When is every matrix over a division ring a sum of an idempotent and a nilpotent?”, Linear Algebra Appl., 450, 7–12.
  • Kosan T., Wang Z. and Zhou Y. 2016. “Nil-clean and strongly nil-clean rings”, J. Pure Appl. Algebra, 220 (2), 633–646.
  • Nicholson W. K. 1977. “Lifting idempotents and exchange rings”, Trans. Amer. Math. Soc., 229, 269-278.
  • Matczuk J. (2017), “Conjugate (nil) clean rings and Köthe’s problem”, J. Algebra Appl., 16 (4), Article 1750073. doi:10.1142/S0219498817500736
  • Sahinkaya S., Tang G. and Zhou Y. 2017. “Nil-clean group rings”, J. Algebra Appl., 16 (7), (2017), Article 1750135. doi.org:10.1142/S0219498817501353
  • Tang G., Su H. and Yuan P. 2021. “Quasi-clean rings and strongly quasi-clean rings”, Commun. Contemp. Math.. doi.org:10.1142/S0219199721500796
  • Zhou Z. 2021. “A multiplicative dual of nil-clean rings”, Canadian Mathematical Bulletin, 1-5. doi:10.4153/S0008439521000059
There are 9 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Tufan Özdin 0000-0001-8081-1871

Early Pub Date August 29, 2022
Publication Date August 31, 2022
Published in Issue Year 2022 Volume: 15 Issue: 2

Cite

APA Özdin, T. (2022). A Multiplicative Dual Nil Q-Clean Rings. Erzincan University Journal of Science and Technology, 15(2), 471-474. https://doi.org/10.18185/erzifbed.1083173