Research Article
BibTex RIS Cite

YIKICI SİSMİK YÜKLER ALTINDA SİLİNDİRİK ÇELİK SU TANKLARININ DOĞRUSAL OLMAYAN ANALİZİ

Year 2020, Volume: 8 Issue: 2, 154 - 170, 31.08.2020
https://doi.org/10.20290/estubtdb.501177

Abstract

Silindirik
çelik sıvı tankları; su, petrol ve endüstriyel kimyasallar gibi çeşitli
sıvıları depolamak için yaygın olarak kullanılmaktadırlar. Ayrıca son yıllarda
nükleer enerji santrallerinde soğutma amaçlı kullanımları yaygınlaşmaktadır.
Çelik sıvı tanklarındaki petrol veya diğer tehlikeli kimyasallar, deprem esnasında
tanklarda oluşan hasarlar sebebi ile büyük finansal ve çevresel zarara neden
olabilmektedir. Önemli mühendislik yapıları olan bu tankların, doğal titreşim
periyotları 0,1 sn.- 0,5 sn. aralığındadır. Bu kısa periyotta meydana gelen
maksimum deprem enerjisinden dolayı tanklarda hasarlar oluşabilir. Bu çalışma
için, silindirik çelik tanklardaki deformasyonlar, burkulmalar çok kısa sürede meydana
geldiği için 0,22 saniyelik El-Centro deprem kaydı kullanılmıştır.  Bununla birlikte, yıkıcı ve kısa süreli
kuvvetler altında yapıların dinamik analizinde ANSYS Workbench “Explicit
Dynamics” aracı çok iyi sonuçlar verdiğinden, seçilen bu süre ve deprem verisi,
doğrusal olmayan analiz için ideal olmuştur. Su ve tank duvarı arasındaki etkileşimi
sağlamak için suyun modellenmesinde, “Eulerian Body” ağ yapısı tekniği, “Explicit Dynamics” aracında tercih
edilmiştir. Analizde üstü-açık tank modeli, üstü-konik model ve üstü-kubbe
şeklinde kapatılan model kullanılmış ve üç farklı cidar kalınlığı için
analizler tekrar edilmiştir. Tank cidar kalınlığına ve tankın kapak şekline
bağlı olarak, meydana gelen deformasyon ve burkulmaların sebepleri
irdelenmiştir. Analiz sonucunda, silindirik çelik sıvı tanklarının kubbe
şeklinde kapatılmasının deformasyonları ve burkulmaları azalttığı görülmüştür

References

  • [1] Product Design and Development Inc. http://www.productdesign-development.com/pages/impact-analysis, yayın tarihi ocak 1 2018, erişim tarihi Nisan 16 2018
  • [2] Cooper, T. W., and Wachholz, T. P. 1999. “Optimizing Post-earthquake Lifeline System Reliability” In Proceedings of the 5th US Conference on Lifeline Earthquake Engineering, 878-86.
  • [3] Veletsos, A. S., and Yang, J. Y. 1977. “Earthquake Response of Liquid Storage Tanks—Advances in Civil Engineering through Mechanics” In Proceedings of the Second ASCE (American Society of Civil Engineers) Engineering Mechanics Specialty Conference, 1-24.
  • [4] Haroun, M. A., and Housner, G. W. 1981. “Earthquake Response of Deformable Storage Tanks” Journal of Applied Mechanics 48 (2): 411-8.
  • [5] Chalhoub, M. S., and Kelly, J. M. 1990. “Shake Table Test of Cylindrical Water Tanks in Base Isolated Structures” Journal of Engineering Mechanics 116 (7): 1451-72.
  • [6] Bo, L., and Jia-xiang, T. 1994. “Vibration Studies of Base Isolated Liquid Storage Tanks” Computers and Structures 52 (5): 1051-9.
  • [7] Malhotra, P. K. 1997. “Method for Seismic Base Isolation of Liquid Storage Tanks” Journal of Structural Engineering 123 (1): 1051-9.
  • [8] Shenton, H. W., and Hampton, F. P. 1999. “Seismic Response of Isolated Elevated Water Tanks” Journal of Structural Engineering 125 (9): 965-76.
  • [9] J.C. Virella, L.A.Godoy,L.E.Suarez “Dynamic buckling of anchored steel tanks subjected to horizontal earthquake excitation”, Journal of Constructional Steel Research 62 (2006) 521–531
  • [10] A. İ. Çelik, Akgül T. “Stress Analysis of Cylindrical Steel Storage Liquid Tanks During the Instantaneous Loads”, The 3rd International conference on Structural Engineering, New Technology and Methods (ICSENM'18), Busapest, 8-10 april 2018.
  • [11] A. Maekawa and K. Fujita, “Explicit Nonlinear Dynamic Analysis of Cylindrical Water Storage Tanks Concerning Coupled Vibration Between Fluid and Structure,” ASME 2008 Pressure Vessels and Piping Conference, vol. 8, Seismic Engineering Chicago, Illinois, USA, 2008.
  • [12] V. Mittal, T. Chakraborty, V. Matsagar, “Dynamic analysis of liquid storage tank under blast using coupled Euler–Lagrange formulation” Thin-Walled Structures, vol. 84, pp. 91-111, 2013, 2014.
  • [13]J.M. Spritzer, S. Guzey, “Review of API 650 Annex E: Design of large steel welded abovegroundstorage tanks excited by seismic loads”, Thin-Walled Structures 112 (2017) 41–65, 2017.
  • [14] S. Nicolici, R.M. Bilegan, “Fluid structure interaction modeling of liquid sloshing phenomena in flexible tanks”, Nucl. Eng. Des. 258 (2013) 51–56.
  • [15] J.M. Spritzer, S. Guzey “Nonlinear numerical evaluation of large open-top aboveground steel weldedliquid storage tanks excited by seismic loads”, Thin-Walled Structures 119 (2017) 662–676
  • [16] Mahmoud R. Maheri, M.E. Karbaschi, M. Mahzoon, “Analytical evaluation of dynamic characteristics of unanchored circular ground-based steel tanks”, Thin-Walled Struct. 109 (1) (2016) 251–259.
  • [17] Kamyar Kildashti, Neda Mirzadehb, Bijan Samali, “Seismic vulnerability assessment of a case study anchored liquid storage tank by considering fixed and flexible base restraints”, Thin-Walled Structures 123 (2018) 382–394
  • [18] M. Ormeno, T. Larkin, N. Chouw, “The effect of seismic uplift on the shell stresses of liquid-storage tanks”, Earthq. Eng. Struct. D 44 (12) (2015) 1979–1996.
  • [19] N. Buratti, M. Tavano, “Dynamic buckling and seismic fragility of anchored steel tanks by the added mass method”, Earthq. Eng. Struct. Dyn. 43 (1) (2014) 1–21 Article.
  • [20] L.A. Godoy, “Buckling of vertical oil storage steel tanks: review of static buckling studies”, Thin-Walled Struct”. 103 (2016) 1–21.
  • [21] M. Djermane, D. Zaoui, B. Labbaci, F. Hammadi, “Dynamic buckling of steel tanks under seismic excitation: numerical evaluation of code provisions”, Eng. Struct. 70 (2014) 181–196.
  • [22] American Petroleum Institute (API) Standard, 650, Welded steel tanks for oil storage, 12th Ed., American Petroleum Institute, 2013
  • [23] Housner, G.W. Dynamic Prssure on Accelerated Fluid Conteiners. Thechnic, California: California Institue, 1955.
  • [24] Hussein, M. M. Storage Water Tanks. eg.linkedin.com/in/moamenmohamedh. Erişim tarihi: 28.01.2018
  • [25] ANSYS 16.2 help document.
  • [26 ] https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/exd_ag/exp_dyn_theory_expl_flui_struct_582.html, Erişim tarihi: 28.01.2018
Year 2020, Volume: 8 Issue: 2, 154 - 170, 31.08.2020
https://doi.org/10.20290/estubtdb.501177

Abstract

References

  • [1] Product Design and Development Inc. http://www.productdesign-development.com/pages/impact-analysis, yayın tarihi ocak 1 2018, erişim tarihi Nisan 16 2018
  • [2] Cooper, T. W., and Wachholz, T. P. 1999. “Optimizing Post-earthquake Lifeline System Reliability” In Proceedings of the 5th US Conference on Lifeline Earthquake Engineering, 878-86.
  • [3] Veletsos, A. S., and Yang, J. Y. 1977. “Earthquake Response of Liquid Storage Tanks—Advances in Civil Engineering through Mechanics” In Proceedings of the Second ASCE (American Society of Civil Engineers) Engineering Mechanics Specialty Conference, 1-24.
  • [4] Haroun, M. A., and Housner, G. W. 1981. “Earthquake Response of Deformable Storage Tanks” Journal of Applied Mechanics 48 (2): 411-8.
  • [5] Chalhoub, M. S., and Kelly, J. M. 1990. “Shake Table Test of Cylindrical Water Tanks in Base Isolated Structures” Journal of Engineering Mechanics 116 (7): 1451-72.
  • [6] Bo, L., and Jia-xiang, T. 1994. “Vibration Studies of Base Isolated Liquid Storage Tanks” Computers and Structures 52 (5): 1051-9.
  • [7] Malhotra, P. K. 1997. “Method for Seismic Base Isolation of Liquid Storage Tanks” Journal of Structural Engineering 123 (1): 1051-9.
  • [8] Shenton, H. W., and Hampton, F. P. 1999. “Seismic Response of Isolated Elevated Water Tanks” Journal of Structural Engineering 125 (9): 965-76.
  • [9] J.C. Virella, L.A.Godoy,L.E.Suarez “Dynamic buckling of anchored steel tanks subjected to horizontal earthquake excitation”, Journal of Constructional Steel Research 62 (2006) 521–531
  • [10] A. İ. Çelik, Akgül T. “Stress Analysis of Cylindrical Steel Storage Liquid Tanks During the Instantaneous Loads”, The 3rd International conference on Structural Engineering, New Technology and Methods (ICSENM'18), Busapest, 8-10 april 2018.
  • [11] A. Maekawa and K. Fujita, “Explicit Nonlinear Dynamic Analysis of Cylindrical Water Storage Tanks Concerning Coupled Vibration Between Fluid and Structure,” ASME 2008 Pressure Vessels and Piping Conference, vol. 8, Seismic Engineering Chicago, Illinois, USA, 2008.
  • [12] V. Mittal, T. Chakraborty, V. Matsagar, “Dynamic analysis of liquid storage tank under blast using coupled Euler–Lagrange formulation” Thin-Walled Structures, vol. 84, pp. 91-111, 2013, 2014.
  • [13]J.M. Spritzer, S. Guzey, “Review of API 650 Annex E: Design of large steel welded abovegroundstorage tanks excited by seismic loads”, Thin-Walled Structures 112 (2017) 41–65, 2017.
  • [14] S. Nicolici, R.M. Bilegan, “Fluid structure interaction modeling of liquid sloshing phenomena in flexible tanks”, Nucl. Eng. Des. 258 (2013) 51–56.
  • [15] J.M. Spritzer, S. Guzey “Nonlinear numerical evaluation of large open-top aboveground steel weldedliquid storage tanks excited by seismic loads”, Thin-Walled Structures 119 (2017) 662–676
  • [16] Mahmoud R. Maheri, M.E. Karbaschi, M. Mahzoon, “Analytical evaluation of dynamic characteristics of unanchored circular ground-based steel tanks”, Thin-Walled Struct. 109 (1) (2016) 251–259.
  • [17] Kamyar Kildashti, Neda Mirzadehb, Bijan Samali, “Seismic vulnerability assessment of a case study anchored liquid storage tank by considering fixed and flexible base restraints”, Thin-Walled Structures 123 (2018) 382–394
  • [18] M. Ormeno, T. Larkin, N. Chouw, “The effect of seismic uplift on the shell stresses of liquid-storage tanks”, Earthq. Eng. Struct. D 44 (12) (2015) 1979–1996.
  • [19] N. Buratti, M. Tavano, “Dynamic buckling and seismic fragility of anchored steel tanks by the added mass method”, Earthq. Eng. Struct. Dyn. 43 (1) (2014) 1–21 Article.
  • [20] L.A. Godoy, “Buckling of vertical oil storage steel tanks: review of static buckling studies”, Thin-Walled Struct”. 103 (2016) 1–21.
  • [21] M. Djermane, D. Zaoui, B. Labbaci, F. Hammadi, “Dynamic buckling of steel tanks under seismic excitation: numerical evaluation of code provisions”, Eng. Struct. 70 (2014) 181–196.
  • [22] American Petroleum Institute (API) Standard, 650, Welded steel tanks for oil storage, 12th Ed., American Petroleum Institute, 2013
  • [23] Housner, G.W. Dynamic Prssure on Accelerated Fluid Conteiners. Thechnic, California: California Institue, 1955.
  • [24] Hussein, M. M. Storage Water Tanks. eg.linkedin.com/in/moamenmohamedh. Erişim tarihi: 28.01.2018
  • [25] ANSYS 16.2 help document.
  • [26 ] https://www.sharcnet.ca/Software/Ansys/17.0/en-us/help/exd_ag/exp_dyn_theory_expl_flui_struct_582.html, Erişim tarihi: 28.01.2018
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ali İhsan Çelik 0000-0001-7233-7647

M. Metin Köse This is me 0000-0002-7462-1577

Tahir Akgül 0000-0003-4826-9212

Ahmet Celal Apay 0000-0003-2008-6588

Publication Date August 31, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Çelik, A. İ., Köse, M. M., Akgül, T., Apay, A. C. (2020). YIKICI SİSMİK YÜKLER ALTINDA SİLİNDİRİK ÇELİK SU TANKLARININ DOĞRUSAL OLMAYAN ANALİZİ. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 8(2), 154-170. https://doi.org/10.20290/estubtdb.501177
AMA Çelik Aİ, Köse MM, Akgül T, Apay AC. YIKICI SİSMİK YÜKLER ALTINDA SİLİNDİRİK ÇELİK SU TANKLARININ DOĞRUSAL OLMAYAN ANALİZİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. August 2020;8(2):154-170. doi:10.20290/estubtdb.501177
Chicago Çelik, Ali İhsan, M. Metin Köse, Tahir Akgül, and Ahmet Celal Apay. “YIKICI SİSMİK YÜKLER ALTINDA SİLİNDİRİK ÇELİK SU TANKLARININ DOĞRUSAL OLMAYAN ANALİZİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler 8, no. 2 (August 2020): 154-70. https://doi.org/10.20290/estubtdb.501177.
EndNote Çelik Aİ, Köse MM, Akgül T, Apay AC (August 1, 2020) YIKICI SİSMİK YÜKLER ALTINDA SİLİNDİRİK ÇELİK SU TANKLARININ DOĞRUSAL OLMAYAN ANALİZİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 8 2 154–170.
IEEE A. İ. Çelik, M. M. Köse, T. Akgül, and A. C. Apay, “YIKICI SİSMİK YÜKLER ALTINDA SİLİNDİRİK ÇELİK SU TANKLARININ DOĞRUSAL OLMAYAN ANALİZİ”, Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, vol. 8, no. 2, pp. 154–170, 2020, doi: 10.20290/estubtdb.501177.
ISNAD Çelik, Ali İhsan et al. “YIKICI SİSMİK YÜKLER ALTINDA SİLİNDİRİK ÇELİK SU TANKLARININ DOĞRUSAL OLMAYAN ANALİZİ”. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler 8/2 (August 2020), 154-170. https://doi.org/10.20290/estubtdb.501177.
JAMA Çelik Aİ, Köse MM, Akgül T, Apay AC. YIKICI SİSMİK YÜKLER ALTINDA SİLİNDİRİK ÇELİK SU TANKLARININ DOĞRUSAL OLMAYAN ANALİZİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. 2020;8:154–170.
MLA Çelik, Ali İhsan et al. “YIKICI SİSMİK YÜKLER ALTINDA SİLİNDİRİK ÇELİK SU TANKLARININ DOĞRUSAL OLMAYAN ANALİZİ”. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, vol. 8, no. 2, 2020, pp. 154-70, doi:10.20290/estubtdb.501177.
Vancouver Çelik Aİ, Köse MM, Akgül T, Apay AC. YIKICI SİSMİK YÜKLER ALTINDA SİLİNDİRİK ÇELİK SU TANKLARININ DOĞRUSAL OLMAYAN ANALİZİ. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler. 2020;8(2):154-70.