Review
BibTex RIS Cite

AIR POLLUTION AND COVID-19

Year 2022, Volume: 7 Issue: 2, 368 - 378, 04.06.2022
https://doi.org/10.35232/estudamhsd.1039535

Abstract

COVID-19 has spread rapidly around the world and has caused socio-economic damage as a major public health problem. Risk factors; when grouped as sociodemographic, medical condition, and environmental exposures; one of the environmental risk factors is air pollution; It is thought that it may play an important role in increasing the sensitivity of the population to the pathogenesis of COVID-19. Measures that restrict human mobility, such as a curfew; considering the decrease in food, entertainment, industry, mining, transportation, and trade activities, it can be predicted that air pollutants may have a reducing effect on their emissions. Studies have shown that increases in the main pollutant parameters used when assessing air quality are a facilitator of transmission, the course, and results of the disease, viral transmission, and an increase in the risk of respiratory and cardiovascular diseases. In the examination of the factors used in calculating the R0 coefficient for COVID-19, air pollution; is seen that it has effects on contact rate, transmission route, and the infected period. Some people who also have an increased risk of cardiovascular disease with long-term exposure to a high concentration of particulate matter receive treatment for high blood pressure. The angiotensin-converting enzyme acts as an entry point into cells for some coronaviruses. ACE inhibitors and ARB used to treat high blood pressure have both been shown to increase the amount of ACE2 and therefore may increase the severity of coronavirus infections. Professional societies recommend continuing standard-ACEinhibitor and ARB therapy. Effective public health interventions have been made because the implementation of restrictions generally reduces the amount of activity-related pollutants, and in the process also reduces people's exposure to air pollutants. By health professionals; evidence-based studies should be conducted and shared to prevent air pollution.

References

  • 1. Liang D, Shi L, Zhao J, Liu P, Schwartz J, Gao S, et al. Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality Rates in the United States. [cited 2021 May 14]. doi:10.1101/2020.05.04.20090746.
  • 2. Chadeau-Hyam M, Bodinier B, Elliott J, Whitaker MD, Tzoulaki I, Vermeulen R, et al. Risk factors for positive and negative COVID-19 tests: a cautious and in-depth analysis of UK biobank data. [cited 2022 Jan 24]. Available from: https://academic.oup.com/ije/article/49/5/1454/5894660
  • 3. Schulz AH, Karrasch S, Bölke G, Cyrys J, Hornberg C, Pickford R, et al. Atmen: Luftschadstoffe und Gesundheit-Teil II Breathing: Ambient Air Pollution and Health-Part II. doi:10.1055/a-0895-6494.
  • 4. Orru H, Ebi KL, Forsberg B. The Interplay of Climate Change and Air Pollution on Health. 2017.
  • 5. Moelling K, Broecker F. Air Microbiome and Pollution: Composition and Potential Effects on Human Health, Including SARS Coronavirus Infection. 2020. doi:10.1155/2020/1646943.
  • 6. Comunian S, Dongo D, Milani C, Palestini P. Air Pollution and COVID-19: The Role of Particulate Matter in the Spread and Increase of COVID-19’s Morbidity and Mortality. Available from: www.mdpi.com/journal/ijerph
  • 7. Martelletti L, Martelletti P. Air Pollution and the Novel COVID-19 Disease: a Putative Disease Risk Factor. doi:10.1007/s42399-020-00274-4.
  • 8. Wu X, Nethery RC, Sabath MB, Braun D, Dominici F. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study [Internet]. medRxiv. 2020 [cited 2021 May 14]. Available from: /pmc/articles/PMC7277007/
  • 9. ACE2 anjiyotensin dönüştürücü enzim 2 [Homo sapiens (insan)] - Gene - NCBI [Internet]. [cited 2021 May 14]. Available from: https://www.ncbi.nlm.nih.gov/gene/59272
  • 10. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. Journal of Pathology. 2004 Jun;203(2):631-7.
  • 11. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A Novel Angiotensin-Converting Enzyme-Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9 [Internet]. 2000. Available from: http://www.circresaha.org.
  • 12. Keidar S, Kaplan M, Gamliel-Lazarovich A. ACE2 of the heart: From angiotensin I to angiotensin (1-7). 2006; Available from: https://academic.oup.com/cardiovascres/article/73/3/463/367423
  • 13. Wang W, Mckinnie SMK, Farhan M, Paul M, Mcdonald T, Mclean B, et al. • Online Data Supplement Key Words: angiotensin-converting enzyme 2 ■ apelin 17 ■ blood pressure ■ computer-based model ■ enzyme kinetics ■ ischemia reperfusion injury ■pyr-apelin 13 Angiotensin-Converting Enzyme 2 Metabolizes and Partially Inactivates Pyr-Apelin-13 and Apelin-17 Physiological Effects in the Cardiovascular System Renin- Angiotensin System. 2016; Available from: http://hyper.ahajournals.org/lookup/suppl/
  • 14. Nicholls J, Peiris M. Good ACE, bad ACE do battle in lung injury, SARS [Internet]. Vol. 11. 2005. Available from: http://www.nature.com/naturemedicine
  • 15. Diaz JH. Hypothesis: angiotensinconverting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. 2020. Available from: https://academic.oup.com/jtm/article/27/3/taaa041/5809509
  • 16. ESC Hipertansiyon Konseyi’nin ACE-İnhibitörleri ve Anjiyotensin Reseptör Engelleyicileri Üzerine Konum Beyanı [Internet]. [cited 2021 May 14]. Available from: https://www.escardio.org/ Councils/Council-on-Hypertension-(CHT)/News/position-statement-of-the-esc-council-on-hypertension-on-ace-inhibitorsand-ang
  • 17. European Medicines Agency | [Internet]. [cited 2022 Jan 24]. Available from: https://www.ema.europa.eu/en
  • 18. HFSA / ACC / AHA Beyanı Kaygıları Ele Alıyor: COVID-19’da RAAS Antagonistlerini Kullanma-American College of Cardiology [Internet]. [cited 2021 May 14]. Available from: https://www.acc.org/latest-in cardiology/articles/2020/03/17/08/59/hfsa-acc-ahastatement-addresses-concerns-re-using-raas-antagonists-in-COVID-19
  • 19. Assessing the relationship between surface levels of PM2,5 and PM10 particulate matter impact on COVID-19 in Milan, Italy | Elsevier Gelişmiş Okuyucu [Internet]. [cited 2021 May 14]. Available from: https://reader.elsevier.com/reader/sd/pii/S0048969720333453?token=E64BDD14C87B59E2E9EA065F2D04AED0979FCA45E6706CD61AA58B353CC071B32FB1E0BBB2461901975436C027CA4412&originRegion=euwest-1&originCreation=20210514125930
  • 20. Lian X, Huang J, Huang R, Liu C, Wang L, Zhang T. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city. Science of the Total Environment. 2020 Nov 10;742:140556.
  • 21. Dietz K. The estimation of the basic reproduction number for infectious diseases. Statistical Methods in Medical Research [Internet]. 1993 Jul 2 [cited 2022 Jan 24];2(1):23-41. Available from: https://journals.sagepub.com/doi/10.1177/096228029300200103?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed
  • 22. Delamater PL, Street EJ, Leslie TF, Yang YT, Jacobsen KH. Complexity of the Basic Reproduction Number (R 0). Emerging infectious diseases [Internet]. 2019 Jan 1 [cited 2022 Jan 24];25(1):1-4. Available from: https://pubmed.ncbi.nlm.nih.gov/30560777/
  • 23. Tobías A, Carnerero C, Reche C, Massagué J, Via M, Minguillón MC, et al. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Science of the Total Environment. 2020 Jul 15;726:138540.

HAVA KİRLİLİĞİ VE COVID-19

Year 2022, Volume: 7 Issue: 2, 368 - 378, 04.06.2022
https://doi.org/10.35232/estudamhsd.1039535

Abstract

Yeni Koronavirüs Hastalığı-2019 hızla dünyaya yayılmış ve büyük bir halk sağlığı sorunu olarak, sosyal ve ekonomik zararlara neden olmuştur. Risk faktörleri; sosyodemografi, tıbbi durum ve çevresel maruziyetler şeklinde gruplandığında; çevresel risk faktörlerinden biri de hava kirliliğidir; nüfusun COVID-19 patogenezine olan duyarlılığının artmasında önemli rol oynayabileceği düşünülmektedir. Sokağa çıkma yasağı gibi insan hareketliliğini kısıtlayan önlemlerin; yemek, eğlence, endüstri, madencilik, ulaşım ve ticaret faaliyetlerinin azalması dikkate alındığında hava kirleticilerinin emisyonu üzerinde azaltıcı etki gösterebileceği öngörülebilir. Hava kalitesi değerlendirilirken kullanılan ana kirletici parametrelerin artışlarının bulaş, hastalığın seyri ve sonuçları üzerinde, viral iletimde kolaylaştırıcı olduğu, solunum ve kardiyovasküler hastalık riskini arttırdığı çalışmalarda gösterilmiştir. COVID-19 için R0 katsayısı hesaplanırken kullanılan faktörlerin incelenmesinde hava kirliliğinin; temas oranı, bulaş yolu, enfekte dönem üzerinde etkileri olduğu görülmektedir. Yüksek partikül madde konsantrasyonuna uzun süreli maruziyet ile kardiyovasküler hastalık riskleri de artmış olan bazı insanlar yüksek kan basıncı nedeniyle tedavi almaktadır. Angiotensin Converting Enzyme (ACE2), bazı korona virüsler için hücrelere giriş noktası görevini üstlenir. Yüksek kan basıncını tedavi etmek için kullanılan ACE inhibitörleri ve anjiyotensin reseptör blokerlerinin (ARB'lerin) ikisinin de ACE2 miktarını arttırdığı ve bu nedenle koronavirüs enfeksiyonlarının şiddetini arttırabileceği gösterilmiştir. Profesyonel topluluklar standart ACE inhibitörü ve ARB tedavisine devam edilmesini önermektedir. Kısıtlamaların uygulanması ile genel olarak faaliyet kaynaklı kirleticilerin miktarının azalması ve bu süreçte insanların hava kirleticilerine maruz kalmalarının da azalmasından dolayı etkili halk sağlığı müdahaleleri yapılmıştır. Sağlık profesyonellerince; hava kirliliğini önlemeye yönelik kanıt temelli çalışmalar yapılmalı ve paylaşılmalıdır.

References

  • 1. Liang D, Shi L, Zhao J, Liu P, Schwartz J, Gao S, et al. Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality Rates in the United States. [cited 2021 May 14]. doi:10.1101/2020.05.04.20090746.
  • 2. Chadeau-Hyam M, Bodinier B, Elliott J, Whitaker MD, Tzoulaki I, Vermeulen R, et al. Risk factors for positive and negative COVID-19 tests: a cautious and in-depth analysis of UK biobank data. [cited 2022 Jan 24]. Available from: https://academic.oup.com/ije/article/49/5/1454/5894660
  • 3. Schulz AH, Karrasch S, Bölke G, Cyrys J, Hornberg C, Pickford R, et al. Atmen: Luftschadstoffe und Gesundheit-Teil II Breathing: Ambient Air Pollution and Health-Part II. doi:10.1055/a-0895-6494.
  • 4. Orru H, Ebi KL, Forsberg B. The Interplay of Climate Change and Air Pollution on Health. 2017.
  • 5. Moelling K, Broecker F. Air Microbiome and Pollution: Composition and Potential Effects on Human Health, Including SARS Coronavirus Infection. 2020. doi:10.1155/2020/1646943.
  • 6. Comunian S, Dongo D, Milani C, Palestini P. Air Pollution and COVID-19: The Role of Particulate Matter in the Spread and Increase of COVID-19’s Morbidity and Mortality. Available from: www.mdpi.com/journal/ijerph
  • 7. Martelletti L, Martelletti P. Air Pollution and the Novel COVID-19 Disease: a Putative Disease Risk Factor. doi:10.1007/s42399-020-00274-4.
  • 8. Wu X, Nethery RC, Sabath MB, Braun D, Dominici F. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study [Internet]. medRxiv. 2020 [cited 2021 May 14]. Available from: /pmc/articles/PMC7277007/
  • 9. ACE2 anjiyotensin dönüştürücü enzim 2 [Homo sapiens (insan)] - Gene - NCBI [Internet]. [cited 2021 May 14]. Available from: https://www.ncbi.nlm.nih.gov/gene/59272
  • 10. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. Journal of Pathology. 2004 Jun;203(2):631-7.
  • 11. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A Novel Angiotensin-Converting Enzyme-Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9 [Internet]. 2000. Available from: http://www.circresaha.org.
  • 12. Keidar S, Kaplan M, Gamliel-Lazarovich A. ACE2 of the heart: From angiotensin I to angiotensin (1-7). 2006; Available from: https://academic.oup.com/cardiovascres/article/73/3/463/367423
  • 13. Wang W, Mckinnie SMK, Farhan M, Paul M, Mcdonald T, Mclean B, et al. • Online Data Supplement Key Words: angiotensin-converting enzyme 2 ■ apelin 17 ■ blood pressure ■ computer-based model ■ enzyme kinetics ■ ischemia reperfusion injury ■pyr-apelin 13 Angiotensin-Converting Enzyme 2 Metabolizes and Partially Inactivates Pyr-Apelin-13 and Apelin-17 Physiological Effects in the Cardiovascular System Renin- Angiotensin System. 2016; Available from: http://hyper.ahajournals.org/lookup/suppl/
  • 14. Nicholls J, Peiris M. Good ACE, bad ACE do battle in lung injury, SARS [Internet]. Vol. 11. 2005. Available from: http://www.nature.com/naturemedicine
  • 15. Diaz JH. Hypothesis: angiotensinconverting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. 2020. Available from: https://academic.oup.com/jtm/article/27/3/taaa041/5809509
  • 16. ESC Hipertansiyon Konseyi’nin ACE-İnhibitörleri ve Anjiyotensin Reseptör Engelleyicileri Üzerine Konum Beyanı [Internet]. [cited 2021 May 14]. Available from: https://www.escardio.org/ Councils/Council-on-Hypertension-(CHT)/News/position-statement-of-the-esc-council-on-hypertension-on-ace-inhibitorsand-ang
  • 17. European Medicines Agency | [Internet]. [cited 2022 Jan 24]. Available from: https://www.ema.europa.eu/en
  • 18. HFSA / ACC / AHA Beyanı Kaygıları Ele Alıyor: COVID-19’da RAAS Antagonistlerini Kullanma-American College of Cardiology [Internet]. [cited 2021 May 14]. Available from: https://www.acc.org/latest-in cardiology/articles/2020/03/17/08/59/hfsa-acc-ahastatement-addresses-concerns-re-using-raas-antagonists-in-COVID-19
  • 19. Assessing the relationship between surface levels of PM2,5 and PM10 particulate matter impact on COVID-19 in Milan, Italy | Elsevier Gelişmiş Okuyucu [Internet]. [cited 2021 May 14]. Available from: https://reader.elsevier.com/reader/sd/pii/S0048969720333453?token=E64BDD14C87B59E2E9EA065F2D04AED0979FCA45E6706CD61AA58B353CC071B32FB1E0BBB2461901975436C027CA4412&originRegion=euwest-1&originCreation=20210514125930
  • 20. Lian X, Huang J, Huang R, Liu C, Wang L, Zhang T. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city. Science of the Total Environment. 2020 Nov 10;742:140556.
  • 21. Dietz K. The estimation of the basic reproduction number for infectious diseases. Statistical Methods in Medical Research [Internet]. 1993 Jul 2 [cited 2022 Jan 24];2(1):23-41. Available from: https://journals.sagepub.com/doi/10.1177/096228029300200103?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed
  • 22. Delamater PL, Street EJ, Leslie TF, Yang YT, Jacobsen KH. Complexity of the Basic Reproduction Number (R 0). Emerging infectious diseases [Internet]. 2019 Jan 1 [cited 2022 Jan 24];25(1):1-4. Available from: https://pubmed.ncbi.nlm.nih.gov/30560777/
  • 23. Tobías A, Carnerero C, Reche C, Massagué J, Via M, Minguillón MC, et al. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Science of the Total Environment. 2020 Jul 15;726:138540.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Public Health, Environmental Health
Journal Section Review
Authors

Caglar Fidan 0000-0001-6125-6200

Recep Akdur 0000-0002-9766-1117

Publication Date June 4, 2022
Submission Date December 21, 2021
Published in Issue Year 2022 Volume: 7 Issue: 2

Cite

Vancouver Fidan C, Akdur R. HAVA KİRLİLİĞİ VE COVID-19. ESTUDAM Public Health Journal. 2022;7(2):368-7.

International Peer Reviewed Journal

Crossref Content Registration logo


The journal adopts Open Access Policy and does not request article proccessing charge (APC), article publishing charge or any other charges.

by-nc.eu.png
This work is licensed under a Creative Commons Attribution 4.0 License