Research Article
BibTex RIS Cite

Fault Detection in Steel Belts of Tires Using Magnetic Sensors and Different Deep Learning Models

Year 2025, Volume: 4 Issue: 1, 85 - 99, 18.02.2025
https://doi.org/10.62520/fujece.1527246

Abstract

Tire failures pose significant safety risks, necessitating advanced inspection techniques. This research investigates the application of magnetic sensors and deep learning for detecting defects in steel belts of the tires. It was aim to develop a robust and accurate fault detection system by measuring magnetic field variations caused by defects. In this study, the magnetic image sensor circuit had been designed and then the images obtained from it have been classified as none, crack, and delamination type steel belt errors. Various deep learning models and their hybrid architectures, were explored and compared. Experimental results demonstrate that all models exhibit strong performance, with the Transformer model achieving the highest accuracy of 96.12%. The developed system offers a potential solution for improving tire safety and reducing maintenance costs in industries.

Ethical Statement

“There is no conflict of interest with any person/institution in the prepared article”

References

  • Y. Zhang, D. Lefebvre, and Q. Li, "Automatic detection of defects in tire radiographic images," IEEE Trans. Autom. Sci. Eng., vol. 14, no. 3, pp. 1378–1386, Jul. 2017.
  • S. L. Lin, "Research on tire crack detection using image deep learning method," Sci. Rep., vol. 13, p. 8027, 2023.
  • Z. Zhang, M. Zhou, H. Wan, M. Li, G. Li, and D. Han, "IDD-Net: Industrial defect detection method based on deep learning," Eng. Appl. Artif. Intell., vol. 123, pt. B, p. 106390, 2023.
  • B. Wang, D. Dou, and N. Shen, "An intelligent belt wear fault diagnosis method based on deep learning," Int. J. Coal Prep. Util., vol. 43, no. 4, pp. 708–725, 2022.
  • S. Brol and J. Warczek, "Utilization of magnetic signature of automotive tire for exploitational wear assessment," Diagnostyka, vol. 23, no. 4, p. 2022412, 2022.
  • Y. Zhang, D. Lefebvre, Q. Li, "Automatic Detection of Defects in Tire Radiographic Images," in IEEE Trans. Autom. Sci. Eng., vol. 14, no. 3, pp. 1378-1386, July 2017.
  • Z. Zheng, J. Shen, Y. Shao, J. Zhang, C. Tian, B. Yu, and Y. Zhang, "Tire defect classification using a deep convolutional sparse-coding network," Meas. Sci. Technol., vol. 32, no. 5, p. 055401, 2021.
  • M. Liu, Q. Zhu, Y. Yin, Y. Fan, Z. Su, and S. Zhang, "Damage detection method of mining conveyor belt based on deep learning," IEEE Sens. J., vol. 22, no. 11, pp. 10870–10879, Jun. 2022.
  • L. Xie, X. Xiang, H. Xu, L. Wang, L. Lin, and G. Yin, "FFCNN: A deep neural network for surface defect detection of magnetic tile," IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3506–3516, Apr. 2021.
  • R. Martínez-Parrales and A. C. Téllez-Anguiano, "Vibration-based fault detection system with IoT capabilities for a conveyor machine," Acta Polytech. Hung., vol. 19, no. 9, pp. 7–24, 2022.
  • Y. Sedaghat, N. Parhizgar, and A. Keshavarz, "Automatic defects detection using neighborhood windows features in tire X-ray images," Int. J. Nonlinear Anal. Appl., vol. 12, spec. iss., pp. 2493–2508, 2021.
  • A. Ş. Şener, I. F. Ince, H. B. Baydargil, I. Garip, and O. Ozturk, "Deep learning-based automatic vertical height adjustment of incorrectly fastened seat belts for driver and passenger safety in fleet vehicles," Proc. Inst. Mech. Eng., Part D: J. Automob. Eng., vol. 236, no. 4, pp. 639–654, 2022.
  • G. Sun, R. Zhang, Z. Liu, L. Wu, Q. Yu, and X. Tan, "EMD-based noise reduction study of steel-cored conveyor belt containing slag signal," Alexandria Eng. J., vol. 98, pp. 56–67, 2024.
  • A. Hamdi, Y. F. Yapan, A. Uysal, and H. Abderazek, "Multi-objective analysis and optimization of energy aspects during dry and MQL turning of unreinforced polypropylene (PP): An approach based on ANOVA, ANN, MOWCA, and MOALO," Int. J. Adv. Manuf. Technol., vol. 128, no. 11, pp. 4933–4950, 2023.
  • T. Nguyen-Da, P. Nguyen-Thanh, and M.-Y. Cho, "Real-time AIoT anomaly detection for industrial diesel generator based on efficient deep learning CNN-LSTM in Industry 4.0," Internet Things, vol. 27, p. 101280, 2024.
  • P. N. Thanh and M.-Y. Cho, "Advanced AIoT for failure classification of industrial diesel generators based on hybrid deep learning CNN-BiLSTM algorithm," Adv. Eng. Inf., vol. 62, pt. A, p. 102644, 2024.
  • Y. Tian, G. Wang, H. Li, Y. Huang, F. Zhao, Y. Guo, J. Gao, J. Lai, "A novel deep learning method based on 2-D CNNs and GRUs for permeability prediction of tight sandstone," Geoenergy Sci. Eng., vol. 238, p. 212851, 2024.
  • X. Qin, W. Zhu, Q. Hu, Z. Zhou, Y. Ding, X. Gao, R. Gu, "DenseNet-Transformer: A deep learning method for spatial–temporal traffic prediction in optical fronthaul network," Comput. Netw., p. 110674, 2024.
  • V. V. N. S. Kumar, G. H. Reddy, and M. N. GiriPrasad, "A novel glaucoma detection model using Unet++-based segmentation and ResNet with GRU-based optimized deep learning," Biomed. Signal Process. Control, vol. 86, pt. A, p. 105069, 2023.
  • E. Ozbay and F. A. Ozbay, "Derin öğrenme ve sınıflandırma yaklaşımları ile BT görüntülerinden Covid-19 tespiti," Dicle Univ. Muhendislik Fak. Muhendislik Derg., vol. 12, no. 2, pp. 211–219, 2021

Manyetik Sensörler ve Farklı Derin Öğrenme Modelleri Kullanarak Lastiklerin Çelik Kayışlarındaki Arıza Tespiti

Year 2025, Volume: 4 Issue: 1, 85 - 99, 18.02.2025
https://doi.org/10.62520/fujece.1527246

Abstract

Lastik arızaları önemli güvenlik riskleri oluşturur ve ileri seviye inceleme tekniklerini gerektirir. Bu araştırma, lastiklerin çelik kuşaklarındaki kusurları tespit etmek için manyetik sensörlerin ve derin öğrenmenin uygulanmasını incelemektedir. Kusurların neden olduğu manyetik alan değişimlerini yakalayarak, sağlam ve doğru bir arıza tespit sistemi geliştirilmesi amaçlanmaktadır. Bu çalışmada, manyetik görüntü sensör devresi tasarlanmış ve daha sonra ondan elde edilen görüntüler, hata olmayan, çatlak ve delaminasyon tipi çelik kuşak hataları olarak sınıflandırılmıştır. Çeşitli derin öğrenme modelleri ve bunların hibrit mimarileri araştırılmış ve karşılaştırılmıştır. Deneysel sonuçlar tüm modellerin güçlü bir performans sergilediğini, Transformatör modelinin %96.12'lik en yüksek doğruluğa ulaştığını göstermektedir. Geliştirilen sistem, endüstrilerde lastik güvenliğini iyileştirmek ve bakım maliyetlerini düşürmek için potansiyel bir çözüm sunmaktadır.

References

  • Y. Zhang, D. Lefebvre, and Q. Li, "Automatic detection of defects in tire radiographic images," IEEE Trans. Autom. Sci. Eng., vol. 14, no. 3, pp. 1378–1386, Jul. 2017.
  • S. L. Lin, "Research on tire crack detection using image deep learning method," Sci. Rep., vol. 13, p. 8027, 2023.
  • Z. Zhang, M. Zhou, H. Wan, M. Li, G. Li, and D. Han, "IDD-Net: Industrial defect detection method based on deep learning," Eng. Appl. Artif. Intell., vol. 123, pt. B, p. 106390, 2023.
  • B. Wang, D. Dou, and N. Shen, "An intelligent belt wear fault diagnosis method based on deep learning," Int. J. Coal Prep. Util., vol. 43, no. 4, pp. 708–725, 2022.
  • S. Brol and J. Warczek, "Utilization of magnetic signature of automotive tire for exploitational wear assessment," Diagnostyka, vol. 23, no. 4, p. 2022412, 2022.
  • Y. Zhang, D. Lefebvre, Q. Li, "Automatic Detection of Defects in Tire Radiographic Images," in IEEE Trans. Autom. Sci. Eng., vol. 14, no. 3, pp. 1378-1386, July 2017.
  • Z. Zheng, J. Shen, Y. Shao, J. Zhang, C. Tian, B. Yu, and Y. Zhang, "Tire defect classification using a deep convolutional sparse-coding network," Meas. Sci. Technol., vol. 32, no. 5, p. 055401, 2021.
  • M. Liu, Q. Zhu, Y. Yin, Y. Fan, Z. Su, and S. Zhang, "Damage detection method of mining conveyor belt based on deep learning," IEEE Sens. J., vol. 22, no. 11, pp. 10870–10879, Jun. 2022.
  • L. Xie, X. Xiang, H. Xu, L. Wang, L. Lin, and G. Yin, "FFCNN: A deep neural network for surface defect detection of magnetic tile," IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3506–3516, Apr. 2021.
  • R. Martínez-Parrales and A. C. Téllez-Anguiano, "Vibration-based fault detection system with IoT capabilities for a conveyor machine," Acta Polytech. Hung., vol. 19, no. 9, pp. 7–24, 2022.
  • Y. Sedaghat, N. Parhizgar, and A. Keshavarz, "Automatic defects detection using neighborhood windows features in tire X-ray images," Int. J. Nonlinear Anal. Appl., vol. 12, spec. iss., pp. 2493–2508, 2021.
  • A. Ş. Şener, I. F. Ince, H. B. Baydargil, I. Garip, and O. Ozturk, "Deep learning-based automatic vertical height adjustment of incorrectly fastened seat belts for driver and passenger safety in fleet vehicles," Proc. Inst. Mech. Eng., Part D: J. Automob. Eng., vol. 236, no. 4, pp. 639–654, 2022.
  • G. Sun, R. Zhang, Z. Liu, L. Wu, Q. Yu, and X. Tan, "EMD-based noise reduction study of steel-cored conveyor belt containing slag signal," Alexandria Eng. J., vol. 98, pp. 56–67, 2024.
  • A. Hamdi, Y. F. Yapan, A. Uysal, and H. Abderazek, "Multi-objective analysis and optimization of energy aspects during dry and MQL turning of unreinforced polypropylene (PP): An approach based on ANOVA, ANN, MOWCA, and MOALO," Int. J. Adv. Manuf. Technol., vol. 128, no. 11, pp. 4933–4950, 2023.
  • T. Nguyen-Da, P. Nguyen-Thanh, and M.-Y. Cho, "Real-time AIoT anomaly detection for industrial diesel generator based on efficient deep learning CNN-LSTM in Industry 4.0," Internet Things, vol. 27, p. 101280, 2024.
  • P. N. Thanh and M.-Y. Cho, "Advanced AIoT for failure classification of industrial diesel generators based on hybrid deep learning CNN-BiLSTM algorithm," Adv. Eng. Inf., vol. 62, pt. A, p. 102644, 2024.
  • Y. Tian, G. Wang, H. Li, Y. Huang, F. Zhao, Y. Guo, J. Gao, J. Lai, "A novel deep learning method based on 2-D CNNs and GRUs for permeability prediction of tight sandstone," Geoenergy Sci. Eng., vol. 238, p. 212851, 2024.
  • X. Qin, W. Zhu, Q. Hu, Z. Zhou, Y. Ding, X. Gao, R. Gu, "DenseNet-Transformer: A deep learning method for spatial–temporal traffic prediction in optical fronthaul network," Comput. Netw., p. 110674, 2024.
  • V. V. N. S. Kumar, G. H. Reddy, and M. N. GiriPrasad, "A novel glaucoma detection model using Unet++-based segmentation and ResNet with GRU-based optimized deep learning," Biomed. Signal Process. Control, vol. 86, pt. A, p. 105069, 2023.
  • E. Ozbay and F. A. Ozbay, "Derin öğrenme ve sınıflandırma yaklaşımları ile BT görüntülerinden Covid-19 tespiti," Dicle Univ. Muhendislik Fak. Muhendislik Derg., vol. 12, no. 2, pp. 211–219, 2021
There are 20 citations in total.

Details

Primary Language English
Subjects Computer Software, Software Engineering (Other)
Journal Section Research Articles
Authors

Sercan Yalçın 0000-0003-1420-2490

Publication Date February 18, 2025
Submission Date August 2, 2024
Acceptance Date September 9, 2024
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

APA Yalçın, S. (2025). Fault Detection in Steel Belts of Tires Using Magnetic Sensors and Different Deep Learning Models. Firat University Journal of Experimental and Computational Engineering, 4(1), 85-99. https://doi.org/10.62520/fujece.1527246
AMA Yalçın S. Fault Detection in Steel Belts of Tires Using Magnetic Sensors and Different Deep Learning Models. FUJECE. February 2025;4(1):85-99. doi:10.62520/fujece.1527246
Chicago Yalçın, Sercan. “Fault Detection in Steel Belts of Tires Using Magnetic Sensors and Different Deep Learning Models”. Firat University Journal of Experimental and Computational Engineering 4, no. 1 (February 2025): 85-99. https://doi.org/10.62520/fujece.1527246.
EndNote Yalçın S (February 1, 2025) Fault Detection in Steel Belts of Tires Using Magnetic Sensors and Different Deep Learning Models. Firat University Journal of Experimental and Computational Engineering 4 1 85–99.
IEEE S. Yalçın, “Fault Detection in Steel Belts of Tires Using Magnetic Sensors and Different Deep Learning Models”, FUJECE, vol. 4, no. 1, pp. 85–99, 2025, doi: 10.62520/fujece.1527246.
ISNAD Yalçın, Sercan. “Fault Detection in Steel Belts of Tires Using Magnetic Sensors and Different Deep Learning Models”. Firat University Journal of Experimental and Computational Engineering 4/1 (February 2025), 85-99. https://doi.org/10.62520/fujece.1527246.
JAMA Yalçın S. Fault Detection in Steel Belts of Tires Using Magnetic Sensors and Different Deep Learning Models. FUJECE. 2025;4:85–99.
MLA Yalçın, Sercan. “Fault Detection in Steel Belts of Tires Using Magnetic Sensors and Different Deep Learning Models”. Firat University Journal of Experimental and Computational Engineering, vol. 4, no. 1, 2025, pp. 85-99, doi:10.62520/fujece.1527246.
Vancouver Yalçın S. Fault Detection in Steel Belts of Tires Using Magnetic Sensors and Different Deep Learning Models. FUJECE. 2025;4(1):85-99.