Research Article
BibTex RIS Cite
Year 2022, , 273 - 279, 01.12.2022
https://doi.org/10.33401/fujma.1049786

Abstract

References

  • [1] L. A. Zadeh, Fuzzy sets, Inf.Control, 8 (1965), 338-353.
  • [2] L. Kuijken, H.V. Maldeghem, E.E. Kerre, Fuzzy projective geometries from fuzzy vector spaces, Proceedings 7th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, (1998), 1331–1338.
  • [3] L. Kuijken, H.V. Maldeghem, E.E. Kerre, Fuzzy projective geometries from fuzzy groups, Tatra Mt. Math. Publ., 16 (1999), 85-108.
  • [4] L. Kuijken, H.V. Maldeghem, On the definition and some conjectures of fuzzy projective planes by Gupta and Ray, and a new definition of fuzzy building geometries, Fuzzy Sets. Syst., 138 (2003), 667-685.
  • [5] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst, 20 (1986), 87-96.
  • [6] E. A. Ghassan, Intuitionistic fuzzy projective geometry, JUAPS, 3 (2009), 1-5.
  • [7] P. K. Sharma, Homomorphism of Intuitionistic Fuzzy Groups, Int. Math. Forum, 6(64) (2011), 3169 - 3178.
  • [8] B. Pekala, Properties of Atanassov’s intuitionistic fuzzy relations and Atanassov’s operators, Inf. Sci., 213 (2012), 84-93.
  • [9] R., Pradhan, M., Pal, Intuitionistic Fuzzy Linear Transformations, APAM, 1(1) (2012), 57-68.
  • [10] A. Bayar, S. Ekmekci, On some classical theorems in intuitionistic fuzzy projective plane, Konuralp J. Math., 3(1) (2015), 12-15.
  • [11] Z. Akca, A. Bayar, S. Ekmekci, On the Intuitionistic Fuzzy Projective Menelaus and Ceva’s conditions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1) (2020), 891-899.
  • [12] G. Cuvalcioglu, S. Tarsuslu (Yılmaz), Isomorphism Theorems on Intuitionistic FuzzyAbstract Algebras, CMA, 12(1), (2021), 109-126.
  • [13] E. Altıntas¸, A. Bayar, Central Collineations in Fuzzy and Intuitionistic Fuzzy Projective Planes, EJOSAT, 35 (2022), 355-363.
  • [14] E. Altıntas¸, A. Bayar, Fuzzy Collineations of Fuzzy Projective Planes, Konuralp J. Math., 10(1) (2022), 166-170.
  • [15] K.S. Abdukhalikov, Fuzzy Linear Maps, J. Math. Anal. Appl. 220 (1998), 1-12.

Characterization of Intuitionistic Fuzzy Collineations in Intuitionistic Fuzzy Projective Planes

Year 2022, , 273 - 279, 01.12.2022
https://doi.org/10.33401/fujma.1049786

Abstract

In this paper, the intuitionistic fuzzy counterparts of the collineations defined in classical projective planes are defined in intuitionistic fuzzy projective planes. The properties of the intuitionistic fuzzy projective plane left invariant under the intuitionistic fuzzy collineations are characterized depending on the base point, base line, membership degrees, and the non-membership degrees of the intuitionistic fuzzy projective plane.

References

  • [1] L. A. Zadeh, Fuzzy sets, Inf.Control, 8 (1965), 338-353.
  • [2] L. Kuijken, H.V. Maldeghem, E.E. Kerre, Fuzzy projective geometries from fuzzy vector spaces, Proceedings 7th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, (1998), 1331–1338.
  • [3] L. Kuijken, H.V. Maldeghem, E.E. Kerre, Fuzzy projective geometries from fuzzy groups, Tatra Mt. Math. Publ., 16 (1999), 85-108.
  • [4] L. Kuijken, H.V. Maldeghem, On the definition and some conjectures of fuzzy projective planes by Gupta and Ray, and a new definition of fuzzy building geometries, Fuzzy Sets. Syst., 138 (2003), 667-685.
  • [5] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst, 20 (1986), 87-96.
  • [6] E. A. Ghassan, Intuitionistic fuzzy projective geometry, JUAPS, 3 (2009), 1-5.
  • [7] P. K. Sharma, Homomorphism of Intuitionistic Fuzzy Groups, Int. Math. Forum, 6(64) (2011), 3169 - 3178.
  • [8] B. Pekala, Properties of Atanassov’s intuitionistic fuzzy relations and Atanassov’s operators, Inf. Sci., 213 (2012), 84-93.
  • [9] R., Pradhan, M., Pal, Intuitionistic Fuzzy Linear Transformations, APAM, 1(1) (2012), 57-68.
  • [10] A. Bayar, S. Ekmekci, On some classical theorems in intuitionistic fuzzy projective plane, Konuralp J. Math., 3(1) (2015), 12-15.
  • [11] Z. Akca, A. Bayar, S. Ekmekci, On the Intuitionistic Fuzzy Projective Menelaus and Ceva’s conditions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 69(1) (2020), 891-899.
  • [12] G. Cuvalcioglu, S. Tarsuslu (Yılmaz), Isomorphism Theorems on Intuitionistic FuzzyAbstract Algebras, CMA, 12(1), (2021), 109-126.
  • [13] E. Altıntas¸, A. Bayar, Central Collineations in Fuzzy and Intuitionistic Fuzzy Projective Planes, EJOSAT, 35 (2022), 355-363.
  • [14] E. Altıntas¸, A. Bayar, Fuzzy Collineations of Fuzzy Projective Planes, Konuralp J. Math., 10(1) (2022), 166-170.
  • [15] K.S. Abdukhalikov, Fuzzy Linear Maps, J. Math. Anal. Appl. 220 (1998), 1-12.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Elif Altıntaş 0000-0002-3454-0326

Ayşe Bayar 0000-0002-2210-5423

Publication Date December 1, 2022
Submission Date December 28, 2021
Acceptance Date August 19, 2022
Published in Issue Year 2022

Cite

APA Altıntaş, E., & Bayar, A. (2022). Characterization of Intuitionistic Fuzzy Collineations in Intuitionistic Fuzzy Projective Planes. Fundamental Journal of Mathematics and Applications, 5(4), 273-279. https://doi.org/10.33401/fujma.1049786
AMA Altıntaş E, Bayar A. Characterization of Intuitionistic Fuzzy Collineations in Intuitionistic Fuzzy Projective Planes. Fundam. J. Math. Appl. December 2022;5(4):273-279. doi:10.33401/fujma.1049786
Chicago Altıntaş, Elif, and Ayşe Bayar. “Characterization of Intuitionistic Fuzzy Collineations in Intuitionistic Fuzzy Projective Planes”. Fundamental Journal of Mathematics and Applications 5, no. 4 (December 2022): 273-79. https://doi.org/10.33401/fujma.1049786.
EndNote Altıntaş E, Bayar A (December 1, 2022) Characterization of Intuitionistic Fuzzy Collineations in Intuitionistic Fuzzy Projective Planes. Fundamental Journal of Mathematics and Applications 5 4 273–279.
IEEE E. Altıntaş and A. Bayar, “Characterization of Intuitionistic Fuzzy Collineations in Intuitionistic Fuzzy Projective Planes”, Fundam. J. Math. Appl., vol. 5, no. 4, pp. 273–279, 2022, doi: 10.33401/fujma.1049786.
ISNAD Altıntaş, Elif - Bayar, Ayşe. “Characterization of Intuitionistic Fuzzy Collineations in Intuitionistic Fuzzy Projective Planes”. Fundamental Journal of Mathematics and Applications 5/4 (December 2022), 273-279. https://doi.org/10.33401/fujma.1049786.
JAMA Altıntaş E, Bayar A. Characterization of Intuitionistic Fuzzy Collineations in Intuitionistic Fuzzy Projective Planes. Fundam. J. Math. Appl. 2022;5:273–279.
MLA Altıntaş, Elif and Ayşe Bayar. “Characterization of Intuitionistic Fuzzy Collineations in Intuitionistic Fuzzy Projective Planes”. Fundamental Journal of Mathematics and Applications, vol. 5, no. 4, 2022, pp. 273-9, doi:10.33401/fujma.1049786.
Vancouver Altıntaş E, Bayar A. Characterization of Intuitionistic Fuzzy Collineations in Intuitionistic Fuzzy Projective Planes. Fundam. J. Math. Appl. 2022;5(4):273-9.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a