Research Article
BibTex RIS Cite

Faber Polynomial Expansion for a New Subclass of Bi-univalent Functions Endowed with $(p,q)$ Calculus Operators

Year 2021, , 17 - 24, 01.03.2021
https://doi.org/10.33401/fujma.831447

Abstract

In this paper, we use the Faber polynomial expansion techniques to get the general Taylor-Maclaurin coefficient estimates for $|a_n|,\ (n\geq 4)$ of a generalized class of bi-univalent functions by means of $(p,q)-$calculus, which was introduced by Chakrabarti and Jagannathan. For functions in such a class, we get the initial coefficient estimates for $|a_2|$ and $|a_3|.$ In particular, the results in this paper generalize or improve (in certain cases) the corresponding results obtained by recent researchers.

References

  • [1] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
  • [2] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, 2004.
  • [3] V. Kac, P. Cheung, Quantum Calculus, Springer-Verlag, New York, 2002.
  • [4] R. Chakrabarti, R. Jagannathan, A (p;q)-oscillator realization of two parameter quantum algebras, J. Phys. A, 24 (1991), 711-718.
  • [5] F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1909), 253-281.
  • [6] F. H. Jackson, q-difference equations, Amer. J. Math., 32(4) (1910), 305-314.
  • [7] G. Faber, Uber polynomische Entwickelungen, Math. Annalen, 57 (1903), 389-408.
  • [8] H. Airault, A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130 (2006), 179-222.
  • [9] S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat, 30(6) (2016), 1567-1575.
  • [10] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569-1573.
  • [11] H. M. Srivastava, A. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192.
  • [12] H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839-1845.
  • [13] Ş. Altınkaya, S. Yalçın, Faber polynomial coefficient estimates for certain classes of bi-univalent functions defined by using the Jackson (p;q)-derivative operator, J. Nonlinear Sci. Appl., 10 (2017), 3067-3074.
  • [14] H. Airault, Remarks on Faber polynomials, Int. Math. Forum, 3(9) (2008), 449-456.
  • [15] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Acad. Sci. Paris, Ser I, 354 (2016), 365-370.
  • [16] J. M. Jahangiri, S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., 2013 (2013), 1-4. Article ID 190560.
Year 2021, , 17 - 24, 01.03.2021
https://doi.org/10.33401/fujma.831447

Abstract

References

  • [1] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
  • [2] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, 2004.
  • [3] V. Kac, P. Cheung, Quantum Calculus, Springer-Verlag, New York, 2002.
  • [4] R. Chakrabarti, R. Jagannathan, A (p;q)-oscillator realization of two parameter quantum algebras, J. Phys. A, 24 (1991), 711-718.
  • [5] F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1909), 253-281.
  • [6] F. H. Jackson, q-difference equations, Amer. J. Math., 32(4) (1910), 305-314.
  • [7] G. Faber, Uber polynomische Entwickelungen, Math. Annalen, 57 (1903), 389-408.
  • [8] H. Airault, A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130 (2006), 179-222.
  • [9] S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat, 30(6) (2016), 1567-1575.
  • [10] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569-1573.
  • [11] H. M. Srivastava, A. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192.
  • [12] H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839-1845.
  • [13] Ş. Altınkaya, S. Yalçın, Faber polynomial coefficient estimates for certain classes of bi-univalent functions defined by using the Jackson (p;q)-derivative operator, J. Nonlinear Sci. Appl., 10 (2017), 3067-3074.
  • [14] H. Airault, Remarks on Faber polynomials, Int. Math. Forum, 3(9) (2008), 449-456.
  • [15] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Acad. Sci. Paris, Ser I, 354 (2016), 365-370.
  • [16] J. M. Jahangiri, S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., 2013 (2013), 1-4. Article ID 190560.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Om P. Ahuja 0000-0003-0701-6390

Asena Çetinkaya 0000-0002-8815-5642

Publication Date March 1, 2021
Submission Date November 25, 2020
Acceptance Date January 30, 2021
Published in Issue Year 2021

Cite

APA Ahuja, O. P., & Çetinkaya, A. (2021). Faber Polynomial Expansion for a New Subclass of Bi-univalent Functions Endowed with $(p,q)$ Calculus Operators. Fundamental Journal of Mathematics and Applications, 4(1), 17-24. https://doi.org/10.33401/fujma.831447
AMA Ahuja OP, Çetinkaya A. Faber Polynomial Expansion for a New Subclass of Bi-univalent Functions Endowed with $(p,q)$ Calculus Operators. Fundam. J. Math. Appl. March 2021;4(1):17-24. doi:10.33401/fujma.831447
Chicago Ahuja, Om P., and Asena Çetinkaya. “Faber Polynomial Expansion for a New Subclass of Bi-Univalent Functions Endowed With $(p,q)$ Calculus Operators”. Fundamental Journal of Mathematics and Applications 4, no. 1 (March 2021): 17-24. https://doi.org/10.33401/fujma.831447.
EndNote Ahuja OP, Çetinkaya A (March 1, 2021) Faber Polynomial Expansion for a New Subclass of Bi-univalent Functions Endowed with $(p,q)$ Calculus Operators. Fundamental Journal of Mathematics and Applications 4 1 17–24.
IEEE O. P. Ahuja and A. Çetinkaya, “Faber Polynomial Expansion for a New Subclass of Bi-univalent Functions Endowed with $(p,q)$ Calculus Operators”, Fundam. J. Math. Appl., vol. 4, no. 1, pp. 17–24, 2021, doi: 10.33401/fujma.831447.
ISNAD Ahuja, Om P. - Çetinkaya, Asena. “Faber Polynomial Expansion for a New Subclass of Bi-Univalent Functions Endowed With $(p,q)$ Calculus Operators”. Fundamental Journal of Mathematics and Applications 4/1 (March 2021), 17-24. https://doi.org/10.33401/fujma.831447.
JAMA Ahuja OP, Çetinkaya A. Faber Polynomial Expansion for a New Subclass of Bi-univalent Functions Endowed with $(p,q)$ Calculus Operators. Fundam. J. Math. Appl. 2021;4:17–24.
MLA Ahuja, Om P. and Asena Çetinkaya. “Faber Polynomial Expansion for a New Subclass of Bi-Univalent Functions Endowed With $(p,q)$ Calculus Operators”. Fundamental Journal of Mathematics and Applications, vol. 4, no. 1, 2021, pp. 17-24, doi:10.33401/fujma.831447.
Vancouver Ahuja OP, Çetinkaya A. Faber Polynomial Expansion for a New Subclass of Bi-univalent Functions Endowed with $(p,q)$ Calculus Operators. Fundam. J. Math. Appl. 2021;4(1):17-24.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a