Research Article
BibTex RIS Cite
Year 2018, Volume: 1 Issue: 1, 18 - 24, 30.06.2018
https://doi.org/10.33401/fujma.404797

Abstract

References

  • [1] W. Barthel, Nichtlineare zusammenh¨ange und deren holonomie gruppen, J. Reine Angew. Math. 212 (1963) 120-149.
  • [2] E. Cartan, Les espaces de Finsler, Hermann, Paris (1934).
  • [3] M. Crampin, On horizontal distributions on the tangent bundle of a differentiable manifold, J. Lond. Math. Soc., (2) 3, (1971) 178-182.
  • [4] B. DeWitt, Supermanifolds, (Cambridge: Cambridge University Press) 2nd edn, 1992.
  • [5] C. Ehresmann, Les connexions infinit´esimales dans un espace fibr´e diff´erentiable, Coll. Topologia, Bruxelles 29-55 (1950).
  • [6] J. Grifone, Structure presque-tangente et connexions. I. (French)Ann. Inst. Fourier (Grenoble) 22 (1972), no. 1, 287–334.
  • [7] J. Grifone, Structure presque-tangente et connexions. II. (French)Ann. Inst. Fourier (Grenoble) 22 (1972), no. 3, 291–338.
  • [8] L. A. Ibort ; G. Landi; J. Marn-Solano and G. Marmo, On the inverse problem of Lagrangian supermechanics, Internat. J. Modern Phys. A 8 (1993), no. 20, 3565–3576.
  • [9] A. Jadczyk and K. Pilch, Superspaces and supersymmetries, Comm. Math. Phys. 78 (1980) 373-390.
  • [10] A. Kawaguchi, Beziehung zwischen einer metrischen linearen Übertragung und einer nicht-metrischen in einem allgemeinen metrischen Rame, Proc. Akad. Wet. Amsterdam 40, (1937) 596-601.
  • [11] A. Kawaguchi, On the theory of non-linear connections II, theory of Minkowski spaces and of non-linear connections in a Finsler spaces,Tensor, New Ser. 6, 165-199 (1956).
  • [12] Y. Kosmann-Schwarzbach, Derived brackets, Lett. Math. Phys. 69 (2004), 61–87.
  • [13] M.M. Rezaii and E. Azizpour, On a superspray in Lagrange superspaces, Rep. Math. Phys. 56 (2005) 257-269.
  • [14] S. Vacaru and H. Dehnen, Locally anisotropic structures and nonlinear connections in Einstein and gauge gravity, Gen. Rel. Grav. 35 (2003) 209-250.
  • [15] S. I. Vacaru, Superstrings in higher order extensions of Finsler superspaces Nucl. Phys. B494 (1997) no. 3, 590-656.
  • [16] S. I. Vacaru, Interactions, strings and isotopies in higher order anisotropic superspaces, Hadronic Press, Palm Harbor, FL, USA, 1998.

A horizontal endomorphism of the canonical superspray

Year 2018, Volume: 1 Issue: 1, 18 - 24, 30.06.2018
https://doi.org/10.33401/fujma.404797

Abstract

Giving up the homogeneity condition of a Lagrange superfunction, we prove that there is a unique horizontal endomorphism $h$ (nonlinear connection) on a supermanifold ${\mathcal{M}},$ such that $h$ is conservative and its torsion vanishes. There are several examples for nonhomogeneous Lagrangians such that this result is not true.

References

  • [1] W. Barthel, Nichtlineare zusammenh¨ange und deren holonomie gruppen, J. Reine Angew. Math. 212 (1963) 120-149.
  • [2] E. Cartan, Les espaces de Finsler, Hermann, Paris (1934).
  • [3] M. Crampin, On horizontal distributions on the tangent bundle of a differentiable manifold, J. Lond. Math. Soc., (2) 3, (1971) 178-182.
  • [4] B. DeWitt, Supermanifolds, (Cambridge: Cambridge University Press) 2nd edn, 1992.
  • [5] C. Ehresmann, Les connexions infinit´esimales dans un espace fibr´e diff´erentiable, Coll. Topologia, Bruxelles 29-55 (1950).
  • [6] J. Grifone, Structure presque-tangente et connexions. I. (French)Ann. Inst. Fourier (Grenoble) 22 (1972), no. 1, 287–334.
  • [7] J. Grifone, Structure presque-tangente et connexions. II. (French)Ann. Inst. Fourier (Grenoble) 22 (1972), no. 3, 291–338.
  • [8] L. A. Ibort ; G. Landi; J. Marn-Solano and G. Marmo, On the inverse problem of Lagrangian supermechanics, Internat. J. Modern Phys. A 8 (1993), no. 20, 3565–3576.
  • [9] A. Jadczyk and K. Pilch, Superspaces and supersymmetries, Comm. Math. Phys. 78 (1980) 373-390.
  • [10] A. Kawaguchi, Beziehung zwischen einer metrischen linearen Übertragung und einer nicht-metrischen in einem allgemeinen metrischen Rame, Proc. Akad. Wet. Amsterdam 40, (1937) 596-601.
  • [11] A. Kawaguchi, On the theory of non-linear connections II, theory of Minkowski spaces and of non-linear connections in a Finsler spaces,Tensor, New Ser. 6, 165-199 (1956).
  • [12] Y. Kosmann-Schwarzbach, Derived brackets, Lett. Math. Phys. 69 (2004), 61–87.
  • [13] M.M. Rezaii and E. Azizpour, On a superspray in Lagrange superspaces, Rep. Math. Phys. 56 (2005) 257-269.
  • [14] S. Vacaru and H. Dehnen, Locally anisotropic structures and nonlinear connections in Einstein and gauge gravity, Gen. Rel. Grav. 35 (2003) 209-250.
  • [15] S. I. Vacaru, Superstrings in higher order extensions of Finsler superspaces Nucl. Phys. B494 (1997) no. 3, 590-656.
  • [16] S. I. Vacaru, Interactions, strings and isotopies in higher order anisotropic superspaces, Hadronic Press, Palm Harbor, FL, USA, 1998.
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Esmaeil Azizpour

Mohammad Hassan Zarifi This is me

Publication Date June 30, 2018
Submission Date March 12, 2018
Acceptance Date April 15, 2018
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

APA Azizpour, E., & Zarifi, M. H. (2018). A horizontal endomorphism of the canonical superspray. Fundamental Journal of Mathematics and Applications, 1(1), 18-24. https://doi.org/10.33401/fujma.404797
AMA Azizpour E, Zarifi MH. A horizontal endomorphism of the canonical superspray. Fundam. J. Math. Appl. June 2018;1(1):18-24. doi:10.33401/fujma.404797
Chicago Azizpour, Esmaeil, and Mohammad Hassan Zarifi. “A Horizontal Endomorphism of the Canonical Superspray”. Fundamental Journal of Mathematics and Applications 1, no. 1 (June 2018): 18-24. https://doi.org/10.33401/fujma.404797.
EndNote Azizpour E, Zarifi MH (June 1, 2018) A horizontal endomorphism of the canonical superspray. Fundamental Journal of Mathematics and Applications 1 1 18–24.
IEEE E. Azizpour and M. H. Zarifi, “A horizontal endomorphism of the canonical superspray”, Fundam. J. Math. Appl., vol. 1, no. 1, pp. 18–24, 2018, doi: 10.33401/fujma.404797.
ISNAD Azizpour, Esmaeil - Zarifi, Mohammad Hassan. “A Horizontal Endomorphism of the Canonical Superspray”. Fundamental Journal of Mathematics and Applications 1/1 (June 2018), 18-24. https://doi.org/10.33401/fujma.404797.
JAMA Azizpour E, Zarifi MH. A horizontal endomorphism of the canonical superspray. Fundam. J. Math. Appl. 2018;1:18–24.
MLA Azizpour, Esmaeil and Mohammad Hassan Zarifi. “A Horizontal Endomorphism of the Canonical Superspray”. Fundamental Journal of Mathematics and Applications, vol. 1, no. 1, 2018, pp. 18-24, doi:10.33401/fujma.404797.
Vancouver Azizpour E, Zarifi MH. A horizontal endomorphism of the canonical superspray. Fundam. J. Math. Appl. 2018;1(1):18-24.

Creative Commons License
The published articles in Fundamental Journal of Mathematics and Applications are licensed under a