Review
BibTex RIS Cite

Denizaltılarda Stirling Motor Temelli Havadan Bağımsız Tahrik Sistemlerinin (AIP) Değerlendirilmesi

Year 2022, Issue: 221, 134 - 162, 30.06.2022
https://doi.org/10.54926/gdt.1113622

Abstract

Ülkelerin savunma güçlerinde özellikle donanma kuvvetleri önemli bir yere sahiptir. Donanma kuvvetlerinin mihenk taşı olan denizaltılar II. Dünya Savaşı’nda ne kadar önemli bir güç olduğunu etkili bir biçimde göstermiştir. O günden günümüze denizaltılarda yapılan teknolojik gelişmeler bir hayli hız kazanmıştır. Bahsi geçen gelişmelerin en başında ise kuşkusuz tahrik sistemlerinde yapılan gelişmeler gelmektedir. Özellikle AIP (Havadan Bağımsız Tahrik) sistemlerinin kullanımı ile hızlı bir gelişim gözlenmiştir. Klasik dizel-elektrik denizaltılardan kapalı çevrimlere yakıt hücresi teknolojisine sahip denizaltılardan Stirling temelli denizaltılara kadar birçok varyant uygulanmaktadır. İsveç ve Japonya gibi gelişmiş ülkelerin donanmalarında da Stirling motor kullanımının denizaltı uygulamaları göze çarpmaktadır. Stirling motorlarının Yakıt hücrelerine kıyasla daha düşük yakıt ikmal maliyetleri ve MESMA sistemine göre daha sessiz olması başlıca avantajları olmaktadır. Ayrıca içten yanmalı motorlara kıyasla egzoz gaz atımının daha kontrollü olması tercih edilmesinin başlıca sebepleri arasında yer almaktadır. Stirling motorlarının yakın geçmişte geliştirilmesi ve NASA’ya ait radyoizitop aracında temel güç kaynağı olarak tercih edilmesi, motorun oksijene gerek duymaksızın ne kadar verimli ve bakım gereksiniminin minimum seviyede olduğunun göstergesidir. Bu makalede Stirling motorunun günümüze kadar gelen süreçte nasıl geliştirildiği ve denizaltı uygulamalarında neden tercih edildiği, avantajları ve geleceği hakkında irdelemelerde bulunulacaktır.

Supporting Institution

Yıldız Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

FYL-2021-4172

Thanks

Bu çalışma, Yıldız Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü’nün FYL-2021-4172 numaralı projesi ile desteklenmiştir. Çalışmalarımıza olan desteklerinden ötürü Dr. Münir Cansın ÖZDEN’ e ve Enishan ÖZCAN’ a teşekkürlerimizi sunarız.

References

  • Ahmadi, M. H., Ahmadi, M. A., & Pourfayaz, F. (2017). Thermal models for analysis of performance of Stirling engine: A review. Renewable and Sustainable Energy Reviews, 68(February 2016), 168–184. https://doi.org/10.1016/j.rser.2016.09.033
  • Association, W. N. (2021). Nuclear-Powered Ships. Tarihinde adresinden erişildi https://world-nuclear.org/information-library/non-power-nuclear-applications/transport/nuclear-powered-ships.aspx
  • Baino, T. (2018). Overview of Hull Design of Diesel Electric Submarines with Air Independent Propulsion (AIP) System – The Maritime Review. Tarihinde adresinden erişildi https://maritimereview.ph/2018/09/26/2281/
  • Bratt, C. (1990). The 4-95 Stirling engine for underwater application. Proceedings of the Intersociety Energy Conversion Engineering Conference, 5, 530–533. https://doi.org/10.1109/iecec.1990.748005
  • Breeze, P. (2018). Stirling Engines and Free Piston Engines. Piston Engine-Based Power Plants, 59–70. https://doi.org/10.1016/b978-0-12-812904-3.00006-9
  • Buckingham, J., Mimeche, C., Hardy, T., & Mimarest, C. (2008). Submarine Power and Propulsion - Application of Technology to Deliver Customer Benefit. UDT Europe 2008, (June), 1–17.
  • Chen, N. and Griffin, F. (1983). A Review of Stirling Engine Mathematical Models. Oak Ridge National Laboratory (ORNL).
  • Chen, N. and Griffin, F. (1986). Linear harmonic analysis of free-piston Stirling engines.
  • Chinese Navy. (2021). China invents most powerful Stirling engine for AIP submarines. Tarihinde adresinden erişildi https://www.china-arms.com/china-best-aip-submarine-engine/
  • Coates, P. (2013). Air İndependent Propulsion. Tarihinde adresinden erişildi http://gentleseas.blogspot.com/2014/07/air-independent-propulsion-game-changer.html
  • de la Bat, B. J. G., Dobson, R. T., Harms, T. M., & Bell, A. J. (2020). Simulation, manufacture and experimental validation of a novel single-acting free-piston Stirling engine electric generator. Applied Energy, 263(January), 114585. https://doi.org/10.1016/j.apenergy.2020.114585
  • Deetlefs, I. N., & Dobson, R. T. (2014). Design, simulation, manufacture and testing of a free-piston stirling engine. (December), 1–90. Tarihinde adresinden erişildi http://scholar.sun.ac.za
  • Doğru. (2020). DENİZALTILAR VE TAHRİK SİSTEMLERİ-2: Havadan Bağımsız Tahrikli Dizel-Elektrik Denizaltılar. Tarihinde adresinden erişildi https://mavivatan.net/denizaltilar-ve-tahrik-sistemleri-2-havadan-bagimsiz-tahrikli-dizel-elektrik-denizaltilar/
  • Gheith, R., Hachem, H., Aloui, F., & Ben Nasrallah, S. (2018). Stirling Engines. Içinde Comprehensive Energy Systems (C. 4–5). https://doi.org/10.1016/B978-0-12-809597-3.00409-0
  • Gray, R. (1985). Conway’s All the World’s Fighting Ships, 1906-1921. Içinde Conway’s All the World’s Fighting Ships, 1906-1921 (s. 314,315).
  • Joubert, S. (2008). A steam powered submarine: the Ictíneo Low-tech Magazine, 24 August 2008. Low-tech Magazine.
  • Kankam, M.D. and Rauch, J. . (1991). Comparative survey of dynamic analyses of freepiston Stirling engines. 26th Intersociety Energy Conversion Engineering Conference.
  • Karabulut, H. (2011). Dynamic analysis of a free piston Stirling engine working with closed and open thermodynamic cycles. Renewable Energy, 36(6), 1704–1709. https://doi.org/10.1016/j.renene.2010.12.006
  • Krummrich, S., & Gmbh, H. W. (2010). Fuel Cell Methanol Reformer System for Submarines. Energy, 78, 1–6.
  • Lee, A., James, B. D., Kuhn, I. F., & Baum, G. N. (1989). A comparative analysis of electrochemical power sources for the DARPA UUV Program. Proceedings of the 6th International Symposium on Unmanned, (6339), 168–188. https://doi.org/10.1109/uust.1989.754714
  • Martini, W. (1983). Stirling Engine Design Manual. National Aerospace and Space Administration (NASA).
  • Masato Kitazaki. (2017). Development of Zero Emission Generating System “Stirling Engine”. Journal of the Japan Institute of Marine Engineering,.
  • Metscher, J. F. (2014). Free-Piston Stirling Convertor Model Development, Validation, and Analysis for Space Power Systems. 73.
  • NARAYAN, S., & GUPTA, V. (2015). Overview of Working of Striling Engines. Journal of Engineering Studies and Research, 21(4), 45–53. https://doi.org/10.29081/jesr.v21i4.132
  • Nightingale, N. P. (1986). Mod II Design Report. U.S. Department Of Energy, 54. Tarihinde adresinden erişildi http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880002196_1988002196.pdf
  • Nilsson, D., & Engineer, S. D. (2014). Development of the Stirling AIP system Stirling AIP system explained Transit area Diesel engine Battery = Days. (1).
  • Nilsson, H. (1988). Submarine power systems using the V4-275R stirling engine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 202(4), 257–267. https://doi.org/10.1243/PIME_PROC_1988_202_036_02
  • Normani, F. (2013). Stirling Engine Manual.
  • Özden, M. C. (2010). DİZEL/ELEKTRİK DENİZALTILARIN DİZAYN AÇISINDAN KARŞILAŞTIRMALI ANALİZİ.
  • Paul Breeze. (2018). Piston Engine and Based Power Plants.
  • Pierre Gras. (2007). Gamma Stirling Engine. Tarihinde adresinden erişildi http://www.moteurstirling.com/gamma.php
  • Preston, A. (1988). Submarine Warfare. Brown Books.
  • Richard Wheeler. (2007). Alpha Stirling Engine. Tarihinde adresinden erişildi https://tr.m.wikipedia.org/wiki/Dosya:Alpha_Stirling_frame_4.svg
  • Riofrio, J., Al-Dakkan, K., Hofacker, M. and Barth, E. (2008). Control-based design of free-piston Stirling engines. American Control Conference, pp. 1533 _ 1538.
  • Rossler, E. (2001). The U-Boat: The Evolution and Technical History of German Submarines.
  • Stirling, D. (2017). Stirling Engine Type. Tarihinde adresinden erişildi https://diystirlingengine.com/
  • STM ThinkTech. (2021). Yeni̇ nesi̇l deni̇zaltilarda enerji̇ kaynaklari ve batarya si̇stemleri̇.
  • Sutton, H. I. (2016). World survey of AIP submarines. Içinde Covert Shores: The Story of Naval Special Forces Missions and Minisubs (2nd baskı). Tarihinde adresinden erişildi http://www.hisutton.com/World survey of AIP submarines.html
  • Sutton, H. I. (2020). AIP Submarines Will Increase The Lethality Of The Indian Navy. Tarihinde adresinden erişildi https://www.forbes.com/sites/hisutton/2020/07/22/aip-submarines-will-increase-the-lethality-of-the-indian-navy/?sh=44d4742141c7
  • ThyssenKrupp. (2020). HDW Fuel Cell AIP System – proven power, simply silent. Tarihinde adresinden erişildi https://www.thyssenkrupp-marinesystems.com/en/products-services/innovations/hdw-fuel-cell-aip-system
  • Tihonov, E., Bazykin, V., & Mukhanov, N. (2019). Opportunity of external combustion engines usage in forestry complex. IOP Conference Series: Earth and Environmental Science, 316(1). https://doi.org/10.1088/1755-1315/316/1/012072
  • Urieli. (1977). A Computer Simulation of Stirling Engine. University of the Witwatersrand.
  • Urieli and Berchowitz. (1984). Stirling cycle engine analysis. (Modern energy studies).
  • Watch, D. (2012). Tomorrow’s Submarines: the Non-Nuclear Option. Tarihinde adresinden erişildi https://argee.net/DefenseWatch/Tomorrows Submarine Fleet--The Non-nuclear Option.htm
  • Wikipedia. (2011). Stirling Engine. Tarihinde adresinden erişildi https://en.wikipedia.org/wiki/Stirling_engine
  • Wikipedia. (2021). Air İndependent Propulsion. Tarihinde adresinden erişildi https://en.wikipedia.org/wiki/Air-independent_propulsion
  • Xuanzun, L. (2021). China develops world’s most powerful Stirling engine. Tarihinde adresinden erişildi https://www.globaltimes.cn/page/202112/1243157.shtml
  • Zhu, S., Yu, G., Jongmin, O., Xu, T., Wu, Z., Dai, W., & Luo, E. (2018). Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system. Applied Energy, 226(May), 522–533. https://doi.org/10.1016/j.apenergy.2018.05.122

Assessment of Stirling Engine Based Air Independent Propulsion Systems in Submarines

Year 2022, Issue: 221, 134 - 162, 30.06.2022
https://doi.org/10.54926/gdt.1113622

Abstract

In the defense forces of countries, especially the navy forces have an important place. Submarines are the cornerstone of naval forces and their power has been effectively demonstrated in World War II. Since then, technological developments in submarines have accelerated considerably. Undoubtedly, the developments made in the propulsion systems are at the forefront of the mentioned developments. Especially with the use of AIP (Air Independent Propulsion Systems) systems, a rapid development has been observed. Many different propulsion systems are applied on submarines, classical diesel-electric submarines, closed-cycle submarines, fuel-cell technology and Stirling-based submarines. In the navies of developed countries such as Sweden and Japan applications of Stirling engines stand out. The main advantages of Stirling engines are lower refueling costs compared to Fuel cells and quieter operation than the MESMA system. In addition, the fact that the exhaust gas emission is more controlled compared to internal combustion engines is among the main reasons why it is preferred. The recent development of Stirling engines and the preference of NASA's radioisotope vehicle as the main power source shows how efficient the engine is without the need for oxygen and maintenance requirements at a minimum level. In this article, it will be discussed how the Stirling engine has been developed until today and why it is preferred in submarine applications, its advantages and its future.

Project Number

FYL-2021-4172

References

  • Ahmadi, M. H., Ahmadi, M. A., & Pourfayaz, F. (2017). Thermal models for analysis of performance of Stirling engine: A review. Renewable and Sustainable Energy Reviews, 68(February 2016), 168–184. https://doi.org/10.1016/j.rser.2016.09.033
  • Association, W. N. (2021). Nuclear-Powered Ships. Tarihinde adresinden erişildi https://world-nuclear.org/information-library/non-power-nuclear-applications/transport/nuclear-powered-ships.aspx
  • Baino, T. (2018). Overview of Hull Design of Diesel Electric Submarines with Air Independent Propulsion (AIP) System – The Maritime Review. Tarihinde adresinden erişildi https://maritimereview.ph/2018/09/26/2281/
  • Bratt, C. (1990). The 4-95 Stirling engine for underwater application. Proceedings of the Intersociety Energy Conversion Engineering Conference, 5, 530–533. https://doi.org/10.1109/iecec.1990.748005
  • Breeze, P. (2018). Stirling Engines and Free Piston Engines. Piston Engine-Based Power Plants, 59–70. https://doi.org/10.1016/b978-0-12-812904-3.00006-9
  • Buckingham, J., Mimeche, C., Hardy, T., & Mimarest, C. (2008). Submarine Power and Propulsion - Application of Technology to Deliver Customer Benefit. UDT Europe 2008, (June), 1–17.
  • Chen, N. and Griffin, F. (1983). A Review of Stirling Engine Mathematical Models. Oak Ridge National Laboratory (ORNL).
  • Chen, N. and Griffin, F. (1986). Linear harmonic analysis of free-piston Stirling engines.
  • Chinese Navy. (2021). China invents most powerful Stirling engine for AIP submarines. Tarihinde adresinden erişildi https://www.china-arms.com/china-best-aip-submarine-engine/
  • Coates, P. (2013). Air İndependent Propulsion. Tarihinde adresinden erişildi http://gentleseas.blogspot.com/2014/07/air-independent-propulsion-game-changer.html
  • de la Bat, B. J. G., Dobson, R. T., Harms, T. M., & Bell, A. J. (2020). Simulation, manufacture and experimental validation of a novel single-acting free-piston Stirling engine electric generator. Applied Energy, 263(January), 114585. https://doi.org/10.1016/j.apenergy.2020.114585
  • Deetlefs, I. N., & Dobson, R. T. (2014). Design, simulation, manufacture and testing of a free-piston stirling engine. (December), 1–90. Tarihinde adresinden erişildi http://scholar.sun.ac.za
  • Doğru. (2020). DENİZALTILAR VE TAHRİK SİSTEMLERİ-2: Havadan Bağımsız Tahrikli Dizel-Elektrik Denizaltılar. Tarihinde adresinden erişildi https://mavivatan.net/denizaltilar-ve-tahrik-sistemleri-2-havadan-bagimsiz-tahrikli-dizel-elektrik-denizaltilar/
  • Gheith, R., Hachem, H., Aloui, F., & Ben Nasrallah, S. (2018). Stirling Engines. Içinde Comprehensive Energy Systems (C. 4–5). https://doi.org/10.1016/B978-0-12-809597-3.00409-0
  • Gray, R. (1985). Conway’s All the World’s Fighting Ships, 1906-1921. Içinde Conway’s All the World’s Fighting Ships, 1906-1921 (s. 314,315).
  • Joubert, S. (2008). A steam powered submarine: the Ictíneo Low-tech Magazine, 24 August 2008. Low-tech Magazine.
  • Kankam, M.D. and Rauch, J. . (1991). Comparative survey of dynamic analyses of freepiston Stirling engines. 26th Intersociety Energy Conversion Engineering Conference.
  • Karabulut, H. (2011). Dynamic analysis of a free piston Stirling engine working with closed and open thermodynamic cycles. Renewable Energy, 36(6), 1704–1709. https://doi.org/10.1016/j.renene.2010.12.006
  • Krummrich, S., & Gmbh, H. W. (2010). Fuel Cell Methanol Reformer System for Submarines. Energy, 78, 1–6.
  • Lee, A., James, B. D., Kuhn, I. F., & Baum, G. N. (1989). A comparative analysis of electrochemical power sources for the DARPA UUV Program. Proceedings of the 6th International Symposium on Unmanned, (6339), 168–188. https://doi.org/10.1109/uust.1989.754714
  • Martini, W. (1983). Stirling Engine Design Manual. National Aerospace and Space Administration (NASA).
  • Masato Kitazaki. (2017). Development of Zero Emission Generating System “Stirling Engine”. Journal of the Japan Institute of Marine Engineering,.
  • Metscher, J. F. (2014). Free-Piston Stirling Convertor Model Development, Validation, and Analysis for Space Power Systems. 73.
  • NARAYAN, S., & GUPTA, V. (2015). Overview of Working of Striling Engines. Journal of Engineering Studies and Research, 21(4), 45–53. https://doi.org/10.29081/jesr.v21i4.132
  • Nightingale, N. P. (1986). Mod II Design Report. U.S. Department Of Energy, 54. Tarihinde adresinden erişildi http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880002196_1988002196.pdf
  • Nilsson, D., & Engineer, S. D. (2014). Development of the Stirling AIP system Stirling AIP system explained Transit area Diesel engine Battery = Days. (1).
  • Nilsson, H. (1988). Submarine power systems using the V4-275R stirling engine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 202(4), 257–267. https://doi.org/10.1243/PIME_PROC_1988_202_036_02
  • Normani, F. (2013). Stirling Engine Manual.
  • Özden, M. C. (2010). DİZEL/ELEKTRİK DENİZALTILARIN DİZAYN AÇISINDAN KARŞILAŞTIRMALI ANALİZİ.
  • Paul Breeze. (2018). Piston Engine and Based Power Plants.
  • Pierre Gras. (2007). Gamma Stirling Engine. Tarihinde adresinden erişildi http://www.moteurstirling.com/gamma.php
  • Preston, A. (1988). Submarine Warfare. Brown Books.
  • Richard Wheeler. (2007). Alpha Stirling Engine. Tarihinde adresinden erişildi https://tr.m.wikipedia.org/wiki/Dosya:Alpha_Stirling_frame_4.svg
  • Riofrio, J., Al-Dakkan, K., Hofacker, M. and Barth, E. (2008). Control-based design of free-piston Stirling engines. American Control Conference, pp. 1533 _ 1538.
  • Rossler, E. (2001). The U-Boat: The Evolution and Technical History of German Submarines.
  • Stirling, D. (2017). Stirling Engine Type. Tarihinde adresinden erişildi https://diystirlingengine.com/
  • STM ThinkTech. (2021). Yeni̇ nesi̇l deni̇zaltilarda enerji̇ kaynaklari ve batarya si̇stemleri̇.
  • Sutton, H. I. (2016). World survey of AIP submarines. Içinde Covert Shores: The Story of Naval Special Forces Missions and Minisubs (2nd baskı). Tarihinde adresinden erişildi http://www.hisutton.com/World survey of AIP submarines.html
  • Sutton, H. I. (2020). AIP Submarines Will Increase The Lethality Of The Indian Navy. Tarihinde adresinden erişildi https://www.forbes.com/sites/hisutton/2020/07/22/aip-submarines-will-increase-the-lethality-of-the-indian-navy/?sh=44d4742141c7
  • ThyssenKrupp. (2020). HDW Fuel Cell AIP System – proven power, simply silent. Tarihinde adresinden erişildi https://www.thyssenkrupp-marinesystems.com/en/products-services/innovations/hdw-fuel-cell-aip-system
  • Tihonov, E., Bazykin, V., & Mukhanov, N. (2019). Opportunity of external combustion engines usage in forestry complex. IOP Conference Series: Earth and Environmental Science, 316(1). https://doi.org/10.1088/1755-1315/316/1/012072
  • Urieli. (1977). A Computer Simulation of Stirling Engine. University of the Witwatersrand.
  • Urieli and Berchowitz. (1984). Stirling cycle engine analysis. (Modern energy studies).
  • Watch, D. (2012). Tomorrow’s Submarines: the Non-Nuclear Option. Tarihinde adresinden erişildi https://argee.net/DefenseWatch/Tomorrows Submarine Fleet--The Non-nuclear Option.htm
  • Wikipedia. (2011). Stirling Engine. Tarihinde adresinden erişildi https://en.wikipedia.org/wiki/Stirling_engine
  • Wikipedia. (2021). Air İndependent Propulsion. Tarihinde adresinden erişildi https://en.wikipedia.org/wiki/Air-independent_propulsion
  • Xuanzun, L. (2021). China develops world’s most powerful Stirling engine. Tarihinde adresinden erişildi https://www.globaltimes.cn/page/202112/1243157.shtml
  • Zhu, S., Yu, G., Jongmin, O., Xu, T., Wu, Z., Dai, W., & Luo, E. (2018). Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system. Applied Energy, 226(May), 522–533. https://doi.org/10.1016/j.apenergy.2018.05.122
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Kadir Beytulllah Gündüz 0000-0001-6878-8357

Yasemin Arıkan Özden 0000-0001-9909-0859

Project Number FYL-2021-4172
Publication Date June 30, 2022
Published in Issue Year 2022 Issue: 221

Cite

APA Gündüz, K. B., & Arıkan Özden, Y. (2022). Denizaltılarda Stirling Motor Temelli Havadan Bağımsız Tahrik Sistemlerinin (AIP) Değerlendirilmesi. Gemi Ve Deniz Teknolojisi(221), 134-162. https://doi.org/10.54926/gdt.1113622