Research Article
BibTex RIS Cite

CAKE PRODUCTION WITH PROBIOTIC Alkalihalobacillus clausii SPORES

Year 2023, , 16 - 24, 15.02.2023
https://doi.org/10.15237/gida.GD22105

Abstract

In recent years, interest in Bacillus spores has increased due to their probiotic properties. This study, it was aimed to produce probiotic cakes by using A. clausii spores. In the baking process; under normal conditions, microwave and steam-assisted baking were applied. The probiotic spore viability was researched after baking, in vitro digestion test, and storage. It was determined that the probiotic spore content of the cake samples after baking was in the range of 5.74-5.88 log cfu/g and the spores preserved their viability at a rate of 79%. As a result of the gastric and intestinal digestion, the number of A. clausii in the cake samples was determined to be 5.89-6.06 log cfu/g and 6.06-6.27 log cfu/g, respectively. As can be seen from these results, the probiotic spores showed high resistance to gastrointestinal conditions and almost preserved viability before the test. Additionally, it was determined that the bacterial spores remained quite stable during storage and kept the initial level. The viability of bacterial spores stored at room temperature was higher than that stored at room temperature.

References

  • AACC, (1999). AACC International Method 02-52.01, 02-31.01 and 44-15.02. Approved Methods of the American Association of Cereal Chemists, Minnesoto, USA.
  • Almada-Erix, C. N., Almada, C. N., Pedrosa, G. T. S., Biachi, J. P., Bonatto, M. S., Schmiele, M., Sant'Ana, A. S. (2022). Bread as probiotic carriers: Resistance of Bacillus coagulans GBI-30 6086 spores through processing steps. Food Res Int, 155, 111040.
  • Arslan-Tontul, S., Erbas, M, Gorgulu A. (2018). The use of probiotic-loaded single- and double-layered microcapsules in cake production. Probiotics Antimicro, 11: 840-849.
  • Bernardeau, M., Lehtinen, M. J., Forssten, S. D, Nurminen, P. (2017). Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J Food Sci Tech, 54:2570–2584
  • Brodkorb A., Egger, L., Alminger, M., Alvito, P., Assunçao, R., Ballance, S., Bohn, T., Bourlieu-Lacanal, C., Boutrou, R., Carriere, F., Clemente, A., Corredig, M., Dupont, D., Dufour, C., Edwards, C., Golding, M., Karakaya, S., Kirkhus, B, Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A.R., Martins, C., Marze, S., McClements, D.J., M´enard, O., Minekus, M., Portmann, R., Santos, C.N., Souchon, I., Singh, R.P., Vegarud, G.E., Wickham, M.S.J., Weitschies, W., Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc, 14: 991-1014.
  • Di Caro, S., Tao, H., Grillo, A., Franceschi, F., Elia, C., Zocco, M. A. (2005). Bacillus clausii effect on gene expression pattern in small bowel mucosa using DNA microarray analysis. Eur J Gastroen Hepat, 17: 951–960.
  • Elshaghabee, F.M.F., Rokana, N., Gulhane, R.D., Sharma, C., Panwar, H. (2017). Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Front Microbiol, 8:1-15.
  • FAO 2002. Guidelines for the Evaluation of Probiotics in Food. Food and Agriculture Organisation of the United Nations and World Health Organisation Working Group Report. Roma. FAO.
  • Hong, H. A., Duc, L. H., Cutting, S. M. (2005). The use of bacterial spore formers as probiotics. FEMS Microbiol Rev, 29:813–835.
  • Jao, C. J., Huangb, S. L., Wu, S. C., Chiang, H. K. (2011). The study on SFLAB GanedenBC30 viability on baking products during storage. 11th International Congress on Engineering and Food (ICEF11), 1601–1609s.
  • Kosak, T., Maeda, T., Nakada, Y., Yukawa, M., and Tanaka, S. (1998). Effect of Bacillus subtilis spore administration on activation of macrophages and natural killer cells in mice. Vet Microbiol, 60: 215–225.
  • Majeed, M., Majeed, S., Nagabhushanam, K., Natarajan, S., Sivakumar, A., Ali, F. (2016). Evaluation of the stability of Bacillus coagulans MTCC 5856 during processing and storage of functional foods. Int J Food Sci Technol, 51:894–901.
  • Marcial-Coba, M. S., Pjaca, A. S., Andersen, C. J., Knochel, S., Nielsen, D. S. (2019). Dried date paste as carrier of the proposed probiotic Bacillus coagulans BC4 and viability assessment during storage and simulated gastric passage. LWT Food Sci Technol, 99: 197-201.
  • Mingmongkolchai, S., Panbangred, W. (2017). Bacillus probiotics: an alternative to antibiotics for livestock production. J Appl Microbiol, 24:1334-1346.
  • Muscettola, M., Grasso, G., Blach-Olszewska, Z., Migliaccio, P., BorghesiNicoletti, C., Giarratan, M. (1992). Effects of Bacillus subtilis spores on interferon production. Pharmacol Res, 26: 176–177.
  • Muscettola, M., Grasso, G., Migliaccio, P., Gallo, V. C. (1991). Plasma interferon-like activity in rabbits after oral administration of Bacillus subtilis spores. J Chemotherapy, 3: 130–132
  • Pabon, K. S. M., Concha, J. L. H., Duque, J. F. S. (2022). Quinoa extruded snacks with probiotics: Physicochemical and sensory properties. Front Sus Food Syst, 6, 935425.
  • Patrone, V., Molinari, P., Morelli, L. (2016). Microbiological and molecular characterization of commercially available probiotics containing Bacillus clausii from India and Pakistan. Int J Food Microbiol, 237: 92-97.
  • Sanders, M. E., Morelli, L., Tompkins, T. A. (2003). Sporeformers as Human Probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr Rev Food Sci F, 2:101-110.
  • Soares, M. B., Martinez, R. C., Pereira, E. P., Balthazar, C. F., Cruz, A. G., Ranadheera, C. S., Sant'Ana, A. S. (2019). The resistance of Bacillus, Bifidobacterium, and Lactobacillus strains with claimed probiotic properties in different food matrices exposed to simulated gastrointestinal tract conditions. Food Res Int, 125: 108542.
  • Urdaci, N. C., Bressollier, P., Pinchuk, I. (2004). Bacillus clausii probiotic strains antimicrobial and immunomodulatory activities. J Clin Gastroenterol, 38: 86-90.

PROBİYOTİK Alkalihalobacillus clausii SPORU İÇEREN KEK ÜRETİMİ

Year 2023, , 16 - 24, 15.02.2023
https://doi.org/10.15237/gida.GD22105

Abstract

Son yıllarda Bacillus bakteri sporlarına olan ilgi, probiyotik özellikleri nedeniyle hızla artmıştır. Bu çalışmada A. clausii sporları kullanılarak probiyotik özellikte kek üretimi amaçlanmıştır. Fırınlama işlemi normal şartlarda, mikrodalga ve buhar destekli olarak uygulanmıştır. Üretilen keklerin probiyotik spor canlılığı pişirme sonunda, in vitro sindirim şartlarında ve depolama sırasında takip edilmiştir. Kek örneklerinin pişirme sonrasında probiyotik spor içeriğinin 5.74-5.88 log kob/g aralığında olduğu ve canlılığın yaklaşık %79 oranında korunduğu tespit edilmiştir. Mide ve bağırsak sindirimi sonucunda kek örneklerinin A. clausii sayısının sırasıyla 5.89-6.06 log kob/g ve 6.06-6.27 log kob/g seviyesinde olduğu tespit edilmiş ve probiyotik sporların gastrointestinal şartlara karşı oldukça direnç gösterdiği belirlenmiştir. Yapılan depolama testleri sonucunda ise bakteriyel sporların depolama sırasında da oldukça stabil halde kaldıkları ve başlangıç seviyelerini korudukları belirlenmiştir. Buzdolabı sıcaklığında depolanan örneklerde daha yüksek bakteriyel spor canlılığı tespit edilmiştir.

References

  • AACC, (1999). AACC International Method 02-52.01, 02-31.01 and 44-15.02. Approved Methods of the American Association of Cereal Chemists, Minnesoto, USA.
  • Almada-Erix, C. N., Almada, C. N., Pedrosa, G. T. S., Biachi, J. P., Bonatto, M. S., Schmiele, M., Sant'Ana, A. S. (2022). Bread as probiotic carriers: Resistance of Bacillus coagulans GBI-30 6086 spores through processing steps. Food Res Int, 155, 111040.
  • Arslan-Tontul, S., Erbas, M, Gorgulu A. (2018). The use of probiotic-loaded single- and double-layered microcapsules in cake production. Probiotics Antimicro, 11: 840-849.
  • Bernardeau, M., Lehtinen, M. J., Forssten, S. D, Nurminen, P. (2017). Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J Food Sci Tech, 54:2570–2584
  • Brodkorb A., Egger, L., Alminger, M., Alvito, P., Assunçao, R., Ballance, S., Bohn, T., Bourlieu-Lacanal, C., Boutrou, R., Carriere, F., Clemente, A., Corredig, M., Dupont, D., Dufour, C., Edwards, C., Golding, M., Karakaya, S., Kirkhus, B, Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A.R., Martins, C., Marze, S., McClements, D.J., M´enard, O., Minekus, M., Portmann, R., Santos, C.N., Souchon, I., Singh, R.P., Vegarud, G.E., Wickham, M.S.J., Weitschies, W., Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc, 14: 991-1014.
  • Di Caro, S., Tao, H., Grillo, A., Franceschi, F., Elia, C., Zocco, M. A. (2005). Bacillus clausii effect on gene expression pattern in small bowel mucosa using DNA microarray analysis. Eur J Gastroen Hepat, 17: 951–960.
  • Elshaghabee, F.M.F., Rokana, N., Gulhane, R.D., Sharma, C., Panwar, H. (2017). Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Front Microbiol, 8:1-15.
  • FAO 2002. Guidelines for the Evaluation of Probiotics in Food. Food and Agriculture Organisation of the United Nations and World Health Organisation Working Group Report. Roma. FAO.
  • Hong, H. A., Duc, L. H., Cutting, S. M. (2005). The use of bacterial spore formers as probiotics. FEMS Microbiol Rev, 29:813–835.
  • Jao, C. J., Huangb, S. L., Wu, S. C., Chiang, H. K. (2011). The study on SFLAB GanedenBC30 viability on baking products during storage. 11th International Congress on Engineering and Food (ICEF11), 1601–1609s.
  • Kosak, T., Maeda, T., Nakada, Y., Yukawa, M., and Tanaka, S. (1998). Effect of Bacillus subtilis spore administration on activation of macrophages and natural killer cells in mice. Vet Microbiol, 60: 215–225.
  • Majeed, M., Majeed, S., Nagabhushanam, K., Natarajan, S., Sivakumar, A., Ali, F. (2016). Evaluation of the stability of Bacillus coagulans MTCC 5856 during processing and storage of functional foods. Int J Food Sci Technol, 51:894–901.
  • Marcial-Coba, M. S., Pjaca, A. S., Andersen, C. J., Knochel, S., Nielsen, D. S. (2019). Dried date paste as carrier of the proposed probiotic Bacillus coagulans BC4 and viability assessment during storage and simulated gastric passage. LWT Food Sci Technol, 99: 197-201.
  • Mingmongkolchai, S., Panbangred, W. (2017). Bacillus probiotics: an alternative to antibiotics for livestock production. J Appl Microbiol, 24:1334-1346.
  • Muscettola, M., Grasso, G., Blach-Olszewska, Z., Migliaccio, P., BorghesiNicoletti, C., Giarratan, M. (1992). Effects of Bacillus subtilis spores on interferon production. Pharmacol Res, 26: 176–177.
  • Muscettola, M., Grasso, G., Migliaccio, P., Gallo, V. C. (1991). Plasma interferon-like activity in rabbits after oral administration of Bacillus subtilis spores. J Chemotherapy, 3: 130–132
  • Pabon, K. S. M., Concha, J. L. H., Duque, J. F. S. (2022). Quinoa extruded snacks with probiotics: Physicochemical and sensory properties. Front Sus Food Syst, 6, 935425.
  • Patrone, V., Molinari, P., Morelli, L. (2016). Microbiological and molecular characterization of commercially available probiotics containing Bacillus clausii from India and Pakistan. Int J Food Microbiol, 237: 92-97.
  • Sanders, M. E., Morelli, L., Tompkins, T. A. (2003). Sporeformers as Human Probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr Rev Food Sci F, 2:101-110.
  • Soares, M. B., Martinez, R. C., Pereira, E. P., Balthazar, C. F., Cruz, A. G., Ranadheera, C. S., Sant'Ana, A. S. (2019). The resistance of Bacillus, Bifidobacterium, and Lactobacillus strains with claimed probiotic properties in different food matrices exposed to simulated gastrointestinal tract conditions. Food Res Int, 125: 108542.
  • Urdaci, N. C., Bressollier, P., Pinchuk, I. (2004). Bacillus clausii probiotic strains antimicrobial and immunomodulatory activities. J Clin Gastroenterol, 38: 86-90.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Gökçe Ersoy 0000-0003-3771-427X

Sultan Arslan Tontul 0000-0003-1557-7948

Mustafa Erbas 0000-0002-9485-2356

Publication Date February 15, 2023
Published in Issue Year 2023

Cite

APA Ersoy, G., Arslan Tontul, S., & Erbas, M. (2023). PROBİYOTİK Alkalihalobacillus clausii SPORU İÇEREN KEK ÜRETİMİ. Gıda, 48(1), 16-24. https://doi.org/10.15237/gida.GD22105
AMA Ersoy G, Arslan Tontul S, Erbas M. PROBİYOTİK Alkalihalobacillus clausii SPORU İÇEREN KEK ÜRETİMİ. GIDA. February 2023;48(1):16-24. doi:10.15237/gida.GD22105
Chicago Ersoy, Gökçe, Sultan Arslan Tontul, and Mustafa Erbas. “PROBİYOTİK Alkalihalobacillus Clausii SPORU İÇEREN KEK ÜRETİMİ”. Gıda 48, no. 1 (February 2023): 16-24. https://doi.org/10.15237/gida.GD22105.
EndNote Ersoy G, Arslan Tontul S, Erbas M (February 1, 2023) PROBİYOTİK Alkalihalobacillus clausii SPORU İÇEREN KEK ÜRETİMİ. Gıda 48 1 16–24.
IEEE G. Ersoy, S. Arslan Tontul, and M. Erbas, “PROBİYOTİK Alkalihalobacillus clausii SPORU İÇEREN KEK ÜRETİMİ”, GIDA, vol. 48, no. 1, pp. 16–24, 2023, doi: 10.15237/gida.GD22105.
ISNAD Ersoy, Gökçe et al. “PROBİYOTİK Alkalihalobacillus Clausii SPORU İÇEREN KEK ÜRETİMİ”. Gıda 48/1 (February 2023), 16-24. https://doi.org/10.15237/gida.GD22105.
JAMA Ersoy G, Arslan Tontul S, Erbas M. PROBİYOTİK Alkalihalobacillus clausii SPORU İÇEREN KEK ÜRETİMİ. GIDA. 2023;48:16–24.
MLA Ersoy, Gökçe et al. “PROBİYOTİK Alkalihalobacillus Clausii SPORU İÇEREN KEK ÜRETİMİ”. Gıda, vol. 48, no. 1, 2023, pp. 16-24, doi:10.15237/gida.GD22105.
Vancouver Ersoy G, Arslan Tontul S, Erbas M. PROBİYOTİK Alkalihalobacillus clausii SPORU İÇEREN KEK ÜRETİMİ. GIDA. 2023;48(1):16-24.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/