Research Article
BibTex RIS Cite

ULTRASON DESTEKLİ EKSTRAKSİYON YÖNTEMİYLE FINDIK ZARINDAN DOĞAL ANTİOKSİDANLARIN EKSTRAKSİYONU: OPTİMİZASYON VE GELENEKSEL YÖNTEMLE KARŞILAŞTIRMA

Year 2024, , 326 - 341, 15.04.2024
https://doi.org/10.15237/gida.GD24025

Abstract

Bu çalışmada, endüstriyel bir gıda atığı olan fındık zarının ekstraksiyonu geleneksel ekstraksiyon (GE) ve ultrases destekli ekstraksiyon (UDE) olmak üzere iki farklı yöntemle gerçekleştirilmiştir. Her iki yöntem koşullarının optimize edilmesinde cevap olarak toplam fenolik madde miktarı (TFM) ve antioksidan kapasite (AK) sonuçları kullanılarak Yanıt Yüzey Metodu (YYM)’ndan yararlanılmıştır. Optimal deneysel tasarım için bağımsız değişkenler ve seviyeleri: GE için sıcaklık (50-90°C), süre (2-62 dakika) ve besleme oranı (%5-15); UDE için ise sıcaklık (25°C-50°C), süre (1-30 dakika), besleme oranı (%5-15) ve ultrasonik genlik (20-50%) seçilmiştir. Optimal koşullar GE için %5 besleme oranı ile 35 dakika boyunca 90°C sıcaklık ve UDE için ise %5 besleme oranı, %50 genlik ile 27 dakika boyunca 50°C sıcaklık olarak belirlenmiştir. Ekstraktların toplam fenolik madde miktarı değerleri GE ve UDE yöntemleri için sırasıyla 142.62 mg GAE/g ve 129.69 mg GAE/g olarak; antioksidan kapasiteleri ise GE ve UDE yöntemleri için sırasıyla 127.02 μmol TE/g ve 116.00 μmol TE/g olarak belirlenmiştir. Sonuç olarak, GE ve UDE yöntemlerinin optimize edilmesiyle elde edilen fındık zarı ekstraktlarının gıdalarda alternatif doğal antioksidan olarak kullanılabileceği ve ileri uygulamalar için önemli bir kaynak olabileceği görülmüştür.

Supporting Institution

Akdeniz Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

FYL-2022-5918

References

  • Açar, Ö. Ç., Gökmen, V., Pellegrini, N., Fogliano, V. (2009). Direct evaluation of the total antioxidant capacity of raw and roasted pulses, nuts and seeds. European Food Research and Technology, 229: 961-969, doi:10.1007/s00217-009-1131-z.
  • Alasalvar, C., Karamac, M., Kosinska, A., Rybarczyk, A., Shahidi, F., Amarowicz, R. (2009). Antioxidant activity of hazelnut skin phenolics. Journal of Agricultural and Food Chemistry, 57(11): 4645-4650, doi:10.1021/jf900489d.
  • Amirabbasi, S., Elhamirad, A. H., Saeediasl, M. R., Armin, M., Ziaolhagh, S. H. R. (2021). Optimization of polyphenolic compounds extraction methods from Okra stem. Journal of Food Measurement and Characterization, 15(1): 717-734, doi: 10.1007/s11694-020-00641-8.
  • Asioli, D., Aschemann-Witzel, J., Caputo, V., Vecchio, R., Annunziata, A., Næs, T., Varela, P. (2017). Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Research International, 99: 58-71, doi: 10.1016/ j.foodres.2017.07.022
  • Bertino, A., Mazzeo, L., Gallo, V., Della Posta, S., Fanali, C., Piemonte, V. (2023). Polyphenols Extraction from Hazelnut Skin Using Water as Solvent: Equilibrium Studies and Quantification of the Total Extractable Polyphenols. Chemical Engineering Transactions, 102, 55-60, doi: 10.3303/CET23102010.
  • Bertolino, M., Belviso, S., Dal Bello, B., Ghirardello, D., Giordano, M., Rolle, L., Zeppa, G. (2015). Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yogurt. LWT-Food Science and Technology, 63(2): 1145-1154, doi: 10.1016/j.lwt.2015.03.113.
  • Bibi Sadeer, N., Montesano, D., Albrizio, S., Zengin, G., & Mahomoodally, M. F. (2020). The versatility of antioxidant assays in food science and safety—Chemistry, applications, strengths, and limitations. Antioxidants, 9(8): 709, doi: 10.3390/antiox9080709.
  • Blomhoff, R., Carlsen, M. H., Andersen, L. F., Jacobs, D. R. (2006). Health benefits of nuts: potential role of antioxidants. British Journal of Nutrition, 96(S2): 52-60, doi: 10.1017/ BJN20061864.
  • Bouafia, M., Colak, N., Ayaz, F. A., Benarfa, A., Harrat, M., Gourine, N., Yousfi, M. (2021). The optimization of ultrasonic-assisted extraction of Centaurea sp. antioxidative phenolic compounds using response surface methodology. Journal of Applied Research on Medicinal and Aromatic Plants, 25: 100330, doi: 10.1016/j.jarmap.2021.100330.
  • Cacace, J. E., Mazza, G. (2003). Mass transfer process during extraction of phenolic compounds from milled berries. Journal of Food Engineering, 59(4): 379-389, doi: 10.1016/S0260-8774(02)00497-1.
  • Chakraborty, S., Uppaluri, R., Das, C. (2020). Optimization of ultrasound-assisted extraction (UAE) process for the recovery of bioactive compounds from bitter gourd using response surface methodology (RSM). Food and Bioproducts Processing, 120: 114-122, doi: 10.1016/ j.fbp.2020.01.003.
  • Chemat, F., Vian, M. A., Cravotto, G. (2012). Green extraction of natural products: Concept and principles. International journal of molecular sciences, 13(7): 8615-8627, doi:10.3390/ ijms13078615.
  • Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics sonochemistry, 34: 540-560, doi: 10.1016/j.ultsonch.2016.06.035.
  • Ciğeroğlu, Z., Aras, Ö., Pinto, C. A., Bayramoglu, M., Kırbaşlar, Ş. İ., Lorenzo, J. M., Barba, F.J., Saraiva, J.A., Şahin, S. (2018). Optimization of ultrasound‐assisted extraction of phenolic compounds from grapefruit (Citrus paradisi Macf.) leaves via D‐optimal design and artificial neural network design with categorical and quantitative variables. Journal of the Science of Food and Agriculture, 98(12): 4584-4596, doi: 10.1002/jsfa.8987.
  • Contini, M., Baccelloni, S., Massantini, R., Anelli, G. (2008). Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature. Food Chemistry, 110(3): 659-669, doi: 10.1016/j.foodchem.2008.02.060.
  • Del Rio, D., Calani, L., Dall’Asta, M., Brighenti, F. (2011). Polyphenolic composition of hazelnut skin. Journal of agricultural and food chemistry, 59(18): 9935-9941, doi: 10.1021/jf202449z.
  • Dinçel-Kasapoğlu, E., Kahraman, S., Tornuk, F. (2021). Optimization of ultrasound assisted antioxidant extraction from apricot pomace using response surface methodology. Journal of Food Measurement and Characterization, 15(6): 5277-5287, doi: 10.1007/s11694-021-01089-0.
  • Dinkçi, N., Aktaş, M., Akdeniz, V., Sirbu, A. (2021). The Influence of hazelnut skin addition on quality properties and antioxidant activity of functional yogurt. Foods, 10(11): 2855, doi: 10.3390/foods10112855.
  • Doğan-Cömert, E., Gökmen, V. (2017). Antioxidants bound to an insoluble food matrix: Their analysis, regeneration behavior, and physiological importance. Comprehensive Reviews in Food Science and Food Safety, 16(3): 382-399, doi: 10.1111/1541-4337.12263.
  • Fanali, C., Gallo, V., Della Posta, S., Dugo, L., Mazzeo, L., Cocchi, M., Piemonte, V., De Gara, L. (2021). Choline chloride–lactic acid-based NADES as an extraction medium in a response surface methodology-optimized method for the extraction of phenolic compounds from hazelnut skin. Molecules, 26(9): 2652, doi: 10.3390/ molecules26092652.
  • Food and Agriculture Organization of the United Nations (FAO): Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL/visualize (2021) (Accessed: 28 June 2023)
  • Fernández-León, M. F., Fernández-León, A. M., Lozano, M., Ayuso, M. C., Amodio, M. L., Colelli, G., González-Gómez, D. (2013). Retention of quality and functional values of broccoli ‘Parthenon’stored in modified atmosphere packaging. Food Control, 31(2): 302-313, doi: 10.1016/j.foodcont.2012.10.012.
  • Frankel, E. N. (1984). Lipid oxidation: mechanisms, products and biological significance. Journal of the American Oil Chemists' Society, 61(12): 1908-1917, doi: 10.1007/BF02540830.
  • Gökmen, V., Serpen, Fogliano, V. (2009). Direct measurement of the total antioxidant capacity of foods: the ‘QUENCHER’approach. Trends in Food Science & Technology, 20(6-7): 278-288, doi: 10.1016/j.tifs.2009.03.010.
  • Göncüoğlu-Taş, N., Gökmen, V. (2015). Bioactive compounds in different hazelnut varieties and their skins. Journal of Food Composition and Analysis, 43: 203-208, doi: 10.1016/j.jfca.2015.07.003.
  • Göncüoğlu-Taş, N., Gökmen, V. (2017). Phenolic compounds in natural and roasted nuts and their skins: a brief review. Current Opinion in Food Science, 14: 103-109, doi: 10.1016/j.cofs.2017.03.001.
  • Hefied, F., Ahmed, Z. B., Yousfi, M. (2023). Optimization of ultrasonic-assisted extraction of phenolic compounds and antioxidant activities From Pistacia atlantica Desf. galls using response surface methodology. Journal of Applied Research on Medicinal and Aromatic Plants, 32: 100449, doi: 1016/j.jarmap.2022.100449.
  • Hemwimol, S., Pavasant, P., Shotipruk, A. (2006). Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrasonics sonochemistry, 13(6): 543-548, doi: 10.1016/ j.ultsonch.2005.09.009.
  • Jesus, M. S., Genisheva, Z., Romaní, A., Pereira, R. N., Teixeira, J. A., Domingues, L. (2019). Bioactive compounds recovery optimization from vine pruning residues using conventional heating and microwave-assisted extraction methods. Industrial Crops and Products, 132: 99-110, doi: 10.1016/j.indcrop.2019.01.070.
  • Kandemir, K., Piskin, E., Xiao, J., Tomas, M., Capanoglu, E. (2022). Fruit juice industry wastes as a source of bioactives. Journal of Agricultural and Food Chemistry, 70(23): 6805-6832, doi: 10.1021/acs.jafc.2c00756.
  • Knorr, D., Zenker, M., Heinz, V., Lee, D. U. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science & Technology, 15(5): 261-266, doi: 10.1016/ j.tifs.2003.12.001.
  • Locatelli, M., Travaglia, F., Coïsson, J. D., Martelli, A., Stévigny, C., Arlorio, M. (2010). Total antioxidant activity of hazelnut skin (Nocciola Piemonte PGI): Impact of different roasting conditions. Food chemistry, 119(4): 1647-1655, doi: 10.1016/j.foodchem.2009.08.048.
  • Longato, E., Meineri, G., Peiretti, P. G., Gai, F., Viuda-Martos, M., Pérez-Álvarez, J. Á., Amorowicz, R., Fernández-López, J. (2019). Effects of hazelnut skin addition on the cooking, antioxidant and sensory properties of chicken burgers. Journal of food science and technology, 56: 3329-3336, doi:10.1007/s13197-019-03813-7.
  • Monagas, M., Garrido, I., Lebron-Aguilar, R., Gómez-Cordovés, M. C., Rybarczyk, A., Amarowicz, R., Bartolome, B. (2009). Comparative flavan-3-ol profile and antioxidant capacity of roasted peanut, hazelnut, and almond skins. Journal of Agricultural and Food Chemistry, 57(22): 10590-10599, doi: 10.1021/jf901391a.
  • Myers, RH, Montgomery, DC. (2002). Response surface methodology: process and product optimization using designed experiments. John Wiley and Sons, New York
  • Odabaş, H. İ., Koca, I. (2016). Application of response surface methodology for optimizing the recovery of phenolic compounds from hazelnut skin using different extraction methods. Industrial Crops and Products, 91: 114-124, doi: 10.1016/j.indcrop.2016.05.033.
  • Pandey, A., Belwal, T., Sekar, K. C., Bhatt, I. D., Rawal, R. S. (2018). Optimization of ultrasonic-assisted extraction (UAE) of phenolics and antioxidant compounds from rhizomes of Rheum moorcroftianum using response surface methodology (RSM). Industrial Crops and Products, 119: 218-225, doi: 10.1016/ j.indcrop.2018.04.019.
  • Pelvan, E., Alasalvar, C., Uzman, S. (2012). Effects of roasting on the antioxidant status and phenolic profiles of commercial Turkish hazelnut varieties (Corylus avellana L.). Journal of agricultural and food chemistry, 60(5): 1218-1223, doi: 10.1021/jf204893x.
  • Pelvan, E., Olgun, E. Ö., Karadağ, A., Alasalvar, C. (2018). Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin). Food chemistry, 244: 102-108, doi: 10.1016/ j.foodchem.2017.10.011.
  • Rakshit, M., Srivastav, P. P. (2021). Optimization of pulsed ultrasonic‐assisted extraction of punicalagin from pomegranate (Punica granatum) peel: A comparison between response surface methodology and artificial neural network‐multiobjective genetic algorithm. Journal of Food Processing and Preservation, 45(1): 5078, doi: 10.1111/jfpp.15078.
  • Rohilla, S., Mahanta, C. L. (2021). Optimization of extraction conditions for ultrasound-assisted extraction of phenolic compounds from tamarillo fruit (Solanum betaceum) using response surface methodology. Journal of Food Measurement and Characterization, 15: 1763-1773, doi: 1007/s11694-020-00751-3.
  • Saklar, S., Ungan, S., Katnas, S. (2003). Microstructural changes in hazelnuts during roasting. Food research international, 36(1): 19-23, doi: 10.1016/S0963-9969(02)00103-5.
  • Serpen, A., Capuano, E., Fogliano, V., Gökmen, V. (2007). A new procedure to measure the antioxidant activity of insoluble food components. Journal of agricultural and food chemistry, 55(19): 7676-7681, doi: 10.1021/jf071291z.
  • Serpen, A., Gökmen, V., Pellegrini, N., Fogliano, V. (2008). Direct measurement of the total antioxidant capacity of cereal products. Journal of Cereal Science, 48(3): 816-820, doi: 10.1016/j.jcs.2008.06.002.
  • Shahidi, F., Alasalvar, C., Liyana-Pathirana, C. M. (2007). Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. Journal of agricultural and food chemistry, 55(4): 1212-1220, doi: 10.1021/jf062472o.
  • Sirichan, T., Kijpatanasilp, I., Asadatorn, N., Assatarakul, K. (2022). Optimization of ultrasound extraction of functional compound from makiang seed by response surface methodology and antimicrobial activity of optimized extract with its application in orange juice. Ultrasonics Sonochemistry, 83: 105916, doi: 10.1016/j.ultsonch.2022.105916.
  • Škerget, M., Kotnik, P., Hadolin, M., Hraš, A. R., Simonič, M., Knez, Ž. (2005). Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry, 89(2): 191-198, doi: 10.1016/j.foodchem.2004.02.025.
  • Şahin, S., Şamlı, R. (2013). Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrasonics sonochemistry, 20(1): 595-602, doi: 10.1016/j.ultsonch.2012.07.029.
  • Tezel, Ö., Yıldız, E. (2020). Sürdürülebilir Atık Yönetimi Uygulamalrında Dünya ve Türkiye Karşılaşması: EDİKAB Örneği. Sosyal Bilimler Araştırma Dergisi, 9(2): 35-48
  • Torun, M., Dincer, C., Topuz, A., Sahin–Nadeem, H., Ozdemir, F. (2015). Aqueous extraction kinetics of soluble solids, phenolics and flavonoids from sage (Salvia fruticosa Miller) leaves. Journal of Food Science and Technology, 52: 2797-2805, doi: 10.1007/s13197-014-1308-8.
  • Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics sonochemistry, 8(3): 303-313, doi: 10.1016/S1350-4177(01)00071-2.
  • Wani, K. M., Uppaluri, R. V. (2022). Efficacy of ultrasound-assisted extraction of bioactive constituents from Psidium guajava leaves. Applied Food Research, 2(1): 100096, doi: 10.1016/j.afres.2022.100096.
  • Wijeratne, S. S., Abou-Zaid, M. M., Shahidi, F. (2006). Antioxidant polyphenols in almond and its coproducts. Journal of Agricultural and Food Chemistry, 54(2): 312-318, doi: 10.1021/jf051692j.
  • Xu, X., Liu, A., Hu, S., Ares, I., Martínez-Larrañaga, M. R., Wang, X., Martínez, M., Anadon, A., Martínez, M. A. (2021). Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry, 353: 129488, doi: 10.1016/j.foodchem.2021.129488.
  • Yılmaz, F. M., Görgüç, A., Karaaslan, M., Vardin, H., Ersus Bilek, S., Uygun, Ö., Bircan, C. (2019). Sour cherry by-products: Compositions, functional properties and recovery potentials–a review. Critical Reviews in Food Science and Nutrition, 59(22): 3549-3563, doi: 10.1080/10408398.2018.1496901.

ULTRASOUND-ASSISTED EXTRACTION OF NATURAL ANTIOXIDANTS FROM THE HAZELNUT SKIN: OPTIMIZATION AND COMPARISION WITH CONVENTIONAL METHOD

Year 2024, , 326 - 341, 15.04.2024
https://doi.org/10.15237/gida.GD24025

Abstract

This study focused on extracting antioxidants from hazelnut skin, an industrial food waste, using two different methods: conventional extraction (CE) and ultrasound-assisted extraction (UAE). The Response Surface Methodology (RSM) has been utilized using the total phenolic content (TPC) and antioxidant capacity (AC) results as responses in optimizing both method conditions. The independent variables and their levels for the optimal experimental design were adjusted as follows: temperature (50-90°C), time (2-62 min), and loading capacity (5-15%) for CE; and temperature (25-50°C), time (1-30 min), loading capacity (5-15%), and ultrasonic amplitude (20-50%) for UAE. The optimum conditions were determined to be 90°C for 35 min with a 5% loading capacity for CE, and 50°C for 27 min with a 5% loading capacity and 50% amplitude for UAE. The TPC of the extracts were found to be 142.62 mg GAE/g and 129.69 mg GAE/g, while the AC values were 127.02 μmol TE/g and 116.00 μmol TE/g for CE and UAE methods, respectively. In conclusion, it has been demonstrated that hazelnut skin extracts obtained by optimizing CE and UAE methods can serve as natural antioxidant alternatives in food products and may hold significant potential for further applications.

Project Number

FYL-2022-5918

References

  • Açar, Ö. Ç., Gökmen, V., Pellegrini, N., Fogliano, V. (2009). Direct evaluation of the total antioxidant capacity of raw and roasted pulses, nuts and seeds. European Food Research and Technology, 229: 961-969, doi:10.1007/s00217-009-1131-z.
  • Alasalvar, C., Karamac, M., Kosinska, A., Rybarczyk, A., Shahidi, F., Amarowicz, R. (2009). Antioxidant activity of hazelnut skin phenolics. Journal of Agricultural and Food Chemistry, 57(11): 4645-4650, doi:10.1021/jf900489d.
  • Amirabbasi, S., Elhamirad, A. H., Saeediasl, M. R., Armin, M., Ziaolhagh, S. H. R. (2021). Optimization of polyphenolic compounds extraction methods from Okra stem. Journal of Food Measurement and Characterization, 15(1): 717-734, doi: 10.1007/s11694-020-00641-8.
  • Asioli, D., Aschemann-Witzel, J., Caputo, V., Vecchio, R., Annunziata, A., Næs, T., Varela, P. (2017). Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Research International, 99: 58-71, doi: 10.1016/ j.foodres.2017.07.022
  • Bertino, A., Mazzeo, L., Gallo, V., Della Posta, S., Fanali, C., Piemonte, V. (2023). Polyphenols Extraction from Hazelnut Skin Using Water as Solvent: Equilibrium Studies and Quantification of the Total Extractable Polyphenols. Chemical Engineering Transactions, 102, 55-60, doi: 10.3303/CET23102010.
  • Bertolino, M., Belviso, S., Dal Bello, B., Ghirardello, D., Giordano, M., Rolle, L., Zeppa, G. (2015). Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yogurt. LWT-Food Science and Technology, 63(2): 1145-1154, doi: 10.1016/j.lwt.2015.03.113.
  • Bibi Sadeer, N., Montesano, D., Albrizio, S., Zengin, G., & Mahomoodally, M. F. (2020). The versatility of antioxidant assays in food science and safety—Chemistry, applications, strengths, and limitations. Antioxidants, 9(8): 709, doi: 10.3390/antiox9080709.
  • Blomhoff, R., Carlsen, M. H., Andersen, L. F., Jacobs, D. R. (2006). Health benefits of nuts: potential role of antioxidants. British Journal of Nutrition, 96(S2): 52-60, doi: 10.1017/ BJN20061864.
  • Bouafia, M., Colak, N., Ayaz, F. A., Benarfa, A., Harrat, M., Gourine, N., Yousfi, M. (2021). The optimization of ultrasonic-assisted extraction of Centaurea sp. antioxidative phenolic compounds using response surface methodology. Journal of Applied Research on Medicinal and Aromatic Plants, 25: 100330, doi: 10.1016/j.jarmap.2021.100330.
  • Cacace, J. E., Mazza, G. (2003). Mass transfer process during extraction of phenolic compounds from milled berries. Journal of Food Engineering, 59(4): 379-389, doi: 10.1016/S0260-8774(02)00497-1.
  • Chakraborty, S., Uppaluri, R., Das, C. (2020). Optimization of ultrasound-assisted extraction (UAE) process for the recovery of bioactive compounds from bitter gourd using response surface methodology (RSM). Food and Bioproducts Processing, 120: 114-122, doi: 10.1016/ j.fbp.2020.01.003.
  • Chemat, F., Vian, M. A., Cravotto, G. (2012). Green extraction of natural products: Concept and principles. International journal of molecular sciences, 13(7): 8615-8627, doi:10.3390/ ijms13078615.
  • Chemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics sonochemistry, 34: 540-560, doi: 10.1016/j.ultsonch.2016.06.035.
  • Ciğeroğlu, Z., Aras, Ö., Pinto, C. A., Bayramoglu, M., Kırbaşlar, Ş. İ., Lorenzo, J. M., Barba, F.J., Saraiva, J.A., Şahin, S. (2018). Optimization of ultrasound‐assisted extraction of phenolic compounds from grapefruit (Citrus paradisi Macf.) leaves via D‐optimal design and artificial neural network design with categorical and quantitative variables. Journal of the Science of Food and Agriculture, 98(12): 4584-4596, doi: 10.1002/jsfa.8987.
  • Contini, M., Baccelloni, S., Massantini, R., Anelli, G. (2008). Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature. Food Chemistry, 110(3): 659-669, doi: 10.1016/j.foodchem.2008.02.060.
  • Del Rio, D., Calani, L., Dall’Asta, M., Brighenti, F. (2011). Polyphenolic composition of hazelnut skin. Journal of agricultural and food chemistry, 59(18): 9935-9941, doi: 10.1021/jf202449z.
  • Dinçel-Kasapoğlu, E., Kahraman, S., Tornuk, F. (2021). Optimization of ultrasound assisted antioxidant extraction from apricot pomace using response surface methodology. Journal of Food Measurement and Characterization, 15(6): 5277-5287, doi: 10.1007/s11694-021-01089-0.
  • Dinkçi, N., Aktaş, M., Akdeniz, V., Sirbu, A. (2021). The Influence of hazelnut skin addition on quality properties and antioxidant activity of functional yogurt. Foods, 10(11): 2855, doi: 10.3390/foods10112855.
  • Doğan-Cömert, E., Gökmen, V. (2017). Antioxidants bound to an insoluble food matrix: Their analysis, regeneration behavior, and physiological importance. Comprehensive Reviews in Food Science and Food Safety, 16(3): 382-399, doi: 10.1111/1541-4337.12263.
  • Fanali, C., Gallo, V., Della Posta, S., Dugo, L., Mazzeo, L., Cocchi, M., Piemonte, V., De Gara, L. (2021). Choline chloride–lactic acid-based NADES as an extraction medium in a response surface methodology-optimized method for the extraction of phenolic compounds from hazelnut skin. Molecules, 26(9): 2652, doi: 10.3390/ molecules26092652.
  • Food and Agriculture Organization of the United Nations (FAO): Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL/visualize (2021) (Accessed: 28 June 2023)
  • Fernández-León, M. F., Fernández-León, A. M., Lozano, M., Ayuso, M. C., Amodio, M. L., Colelli, G., González-Gómez, D. (2013). Retention of quality and functional values of broccoli ‘Parthenon’stored in modified atmosphere packaging. Food Control, 31(2): 302-313, doi: 10.1016/j.foodcont.2012.10.012.
  • Frankel, E. N. (1984). Lipid oxidation: mechanisms, products and biological significance. Journal of the American Oil Chemists' Society, 61(12): 1908-1917, doi: 10.1007/BF02540830.
  • Gökmen, V., Serpen, Fogliano, V. (2009). Direct measurement of the total antioxidant capacity of foods: the ‘QUENCHER’approach. Trends in Food Science & Technology, 20(6-7): 278-288, doi: 10.1016/j.tifs.2009.03.010.
  • Göncüoğlu-Taş, N., Gökmen, V. (2015). Bioactive compounds in different hazelnut varieties and their skins. Journal of Food Composition and Analysis, 43: 203-208, doi: 10.1016/j.jfca.2015.07.003.
  • Göncüoğlu-Taş, N., Gökmen, V. (2017). Phenolic compounds in natural and roasted nuts and their skins: a brief review. Current Opinion in Food Science, 14: 103-109, doi: 10.1016/j.cofs.2017.03.001.
  • Hefied, F., Ahmed, Z. B., Yousfi, M. (2023). Optimization of ultrasonic-assisted extraction of phenolic compounds and antioxidant activities From Pistacia atlantica Desf. galls using response surface methodology. Journal of Applied Research on Medicinal and Aromatic Plants, 32: 100449, doi: 1016/j.jarmap.2022.100449.
  • Hemwimol, S., Pavasant, P., Shotipruk, A. (2006). Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrasonics sonochemistry, 13(6): 543-548, doi: 10.1016/ j.ultsonch.2005.09.009.
  • Jesus, M. S., Genisheva, Z., Romaní, A., Pereira, R. N., Teixeira, J. A., Domingues, L. (2019). Bioactive compounds recovery optimization from vine pruning residues using conventional heating and microwave-assisted extraction methods. Industrial Crops and Products, 132: 99-110, doi: 10.1016/j.indcrop.2019.01.070.
  • Kandemir, K., Piskin, E., Xiao, J., Tomas, M., Capanoglu, E. (2022). Fruit juice industry wastes as a source of bioactives. Journal of Agricultural and Food Chemistry, 70(23): 6805-6832, doi: 10.1021/acs.jafc.2c00756.
  • Knorr, D., Zenker, M., Heinz, V., Lee, D. U. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science & Technology, 15(5): 261-266, doi: 10.1016/ j.tifs.2003.12.001.
  • Locatelli, M., Travaglia, F., Coïsson, J. D., Martelli, A., Stévigny, C., Arlorio, M. (2010). Total antioxidant activity of hazelnut skin (Nocciola Piemonte PGI): Impact of different roasting conditions. Food chemistry, 119(4): 1647-1655, doi: 10.1016/j.foodchem.2009.08.048.
  • Longato, E., Meineri, G., Peiretti, P. G., Gai, F., Viuda-Martos, M., Pérez-Álvarez, J. Á., Amorowicz, R., Fernández-López, J. (2019). Effects of hazelnut skin addition on the cooking, antioxidant and sensory properties of chicken burgers. Journal of food science and technology, 56: 3329-3336, doi:10.1007/s13197-019-03813-7.
  • Monagas, M., Garrido, I., Lebron-Aguilar, R., Gómez-Cordovés, M. C., Rybarczyk, A., Amarowicz, R., Bartolome, B. (2009). Comparative flavan-3-ol profile and antioxidant capacity of roasted peanut, hazelnut, and almond skins. Journal of Agricultural and Food Chemistry, 57(22): 10590-10599, doi: 10.1021/jf901391a.
  • Myers, RH, Montgomery, DC. (2002). Response surface methodology: process and product optimization using designed experiments. John Wiley and Sons, New York
  • Odabaş, H. İ., Koca, I. (2016). Application of response surface methodology for optimizing the recovery of phenolic compounds from hazelnut skin using different extraction methods. Industrial Crops and Products, 91: 114-124, doi: 10.1016/j.indcrop.2016.05.033.
  • Pandey, A., Belwal, T., Sekar, K. C., Bhatt, I. D., Rawal, R. S. (2018). Optimization of ultrasonic-assisted extraction (UAE) of phenolics and antioxidant compounds from rhizomes of Rheum moorcroftianum using response surface methodology (RSM). Industrial Crops and Products, 119: 218-225, doi: 10.1016/ j.indcrop.2018.04.019.
  • Pelvan, E., Alasalvar, C., Uzman, S. (2012). Effects of roasting on the antioxidant status and phenolic profiles of commercial Turkish hazelnut varieties (Corylus avellana L.). Journal of agricultural and food chemistry, 60(5): 1218-1223, doi: 10.1021/jf204893x.
  • Pelvan, E., Olgun, E. Ö., Karadağ, A., Alasalvar, C. (2018). Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin). Food chemistry, 244: 102-108, doi: 10.1016/ j.foodchem.2017.10.011.
  • Rakshit, M., Srivastav, P. P. (2021). Optimization of pulsed ultrasonic‐assisted extraction of punicalagin from pomegranate (Punica granatum) peel: A comparison between response surface methodology and artificial neural network‐multiobjective genetic algorithm. Journal of Food Processing and Preservation, 45(1): 5078, doi: 10.1111/jfpp.15078.
  • Rohilla, S., Mahanta, C. L. (2021). Optimization of extraction conditions for ultrasound-assisted extraction of phenolic compounds from tamarillo fruit (Solanum betaceum) using response surface methodology. Journal of Food Measurement and Characterization, 15: 1763-1773, doi: 1007/s11694-020-00751-3.
  • Saklar, S., Ungan, S., Katnas, S. (2003). Microstructural changes in hazelnuts during roasting. Food research international, 36(1): 19-23, doi: 10.1016/S0963-9969(02)00103-5.
  • Serpen, A., Capuano, E., Fogliano, V., Gökmen, V. (2007). A new procedure to measure the antioxidant activity of insoluble food components. Journal of agricultural and food chemistry, 55(19): 7676-7681, doi: 10.1021/jf071291z.
  • Serpen, A., Gökmen, V., Pellegrini, N., Fogliano, V. (2008). Direct measurement of the total antioxidant capacity of cereal products. Journal of Cereal Science, 48(3): 816-820, doi: 10.1016/j.jcs.2008.06.002.
  • Shahidi, F., Alasalvar, C., Liyana-Pathirana, C. M. (2007). Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. Journal of agricultural and food chemistry, 55(4): 1212-1220, doi: 10.1021/jf062472o.
  • Sirichan, T., Kijpatanasilp, I., Asadatorn, N., Assatarakul, K. (2022). Optimization of ultrasound extraction of functional compound from makiang seed by response surface methodology and antimicrobial activity of optimized extract with its application in orange juice. Ultrasonics Sonochemistry, 83: 105916, doi: 10.1016/j.ultsonch.2022.105916.
  • Škerget, M., Kotnik, P., Hadolin, M., Hraš, A. R., Simonič, M., Knez, Ž. (2005). Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry, 89(2): 191-198, doi: 10.1016/j.foodchem.2004.02.025.
  • Şahin, S., Şamlı, R. (2013). Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrasonics sonochemistry, 20(1): 595-602, doi: 10.1016/j.ultsonch.2012.07.029.
  • Tezel, Ö., Yıldız, E. (2020). Sürdürülebilir Atık Yönetimi Uygulamalrında Dünya ve Türkiye Karşılaşması: EDİKAB Örneği. Sosyal Bilimler Araştırma Dergisi, 9(2): 35-48
  • Torun, M., Dincer, C., Topuz, A., Sahin–Nadeem, H., Ozdemir, F. (2015). Aqueous extraction kinetics of soluble solids, phenolics and flavonoids from sage (Salvia fruticosa Miller) leaves. Journal of Food Science and Technology, 52: 2797-2805, doi: 10.1007/s13197-014-1308-8.
  • Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics sonochemistry, 8(3): 303-313, doi: 10.1016/S1350-4177(01)00071-2.
  • Wani, K. M., Uppaluri, R. V. (2022). Efficacy of ultrasound-assisted extraction of bioactive constituents from Psidium guajava leaves. Applied Food Research, 2(1): 100096, doi: 10.1016/j.afres.2022.100096.
  • Wijeratne, S. S., Abou-Zaid, M. M., Shahidi, F. (2006). Antioxidant polyphenols in almond and its coproducts. Journal of Agricultural and Food Chemistry, 54(2): 312-318, doi: 10.1021/jf051692j.
  • Xu, X., Liu, A., Hu, S., Ares, I., Martínez-Larrañaga, M. R., Wang, X., Martínez, M., Anadon, A., Martínez, M. A. (2021). Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry, 353: 129488, doi: 10.1016/j.foodchem.2021.129488.
  • Yılmaz, F. M., Görgüç, A., Karaaslan, M., Vardin, H., Ersus Bilek, S., Uygun, Ö., Bircan, C. (2019). Sour cherry by-products: Compositions, functional properties and recovery potentials–a review. Critical Reviews in Food Science and Nutrition, 59(22): 3549-3563, doi: 10.1080/10408398.2018.1496901.
There are 55 citations in total.

Details

Primary Language English
Subjects Food Technology
Journal Section Articles
Authors

Merve Özdemir 0000-0002-1962-4118

Mehmet Torun 0000-0002-6287-2993

Project Number FYL-2022-5918
Publication Date April 15, 2024
Submission Date February 9, 2024
Acceptance Date March 27, 2024
Published in Issue Year 2024

Cite

APA Özdemir, M., & Torun, M. (2024). ULTRASOUND-ASSISTED EXTRACTION OF NATURAL ANTIOXIDANTS FROM THE HAZELNUT SKIN: OPTIMIZATION AND COMPARISION WITH CONVENTIONAL METHOD. Gıda, 49(2), 326-341. https://doi.org/10.15237/gida.GD24025
AMA Özdemir M, Torun M. ULTRASOUND-ASSISTED EXTRACTION OF NATURAL ANTIOXIDANTS FROM THE HAZELNUT SKIN: OPTIMIZATION AND COMPARISION WITH CONVENTIONAL METHOD. GIDA. April 2024;49(2):326-341. doi:10.15237/gida.GD24025
Chicago Özdemir, Merve, and Mehmet Torun. “ULTRASOUND-ASSISTED EXTRACTION OF NATURAL ANTIOXIDANTS FROM THE HAZELNUT SKIN: OPTIMIZATION AND COMPARISION WITH CONVENTIONAL METHOD”. Gıda 49, no. 2 (April 2024): 326-41. https://doi.org/10.15237/gida.GD24025.
EndNote Özdemir M, Torun M (April 1, 2024) ULTRASOUND-ASSISTED EXTRACTION OF NATURAL ANTIOXIDANTS FROM THE HAZELNUT SKIN: OPTIMIZATION AND COMPARISION WITH CONVENTIONAL METHOD. Gıda 49 2 326–341.
IEEE M. Özdemir and M. Torun, “ULTRASOUND-ASSISTED EXTRACTION OF NATURAL ANTIOXIDANTS FROM THE HAZELNUT SKIN: OPTIMIZATION AND COMPARISION WITH CONVENTIONAL METHOD”, GIDA, vol. 49, no. 2, pp. 326–341, 2024, doi: 10.15237/gida.GD24025.
ISNAD Özdemir, Merve - Torun, Mehmet. “ULTRASOUND-ASSISTED EXTRACTION OF NATURAL ANTIOXIDANTS FROM THE HAZELNUT SKIN: OPTIMIZATION AND COMPARISION WITH CONVENTIONAL METHOD”. Gıda 49/2 (April 2024), 326-341. https://doi.org/10.15237/gida.GD24025.
JAMA Özdemir M, Torun M. ULTRASOUND-ASSISTED EXTRACTION OF NATURAL ANTIOXIDANTS FROM THE HAZELNUT SKIN: OPTIMIZATION AND COMPARISION WITH CONVENTIONAL METHOD. GIDA. 2024;49:326–341.
MLA Özdemir, Merve and Mehmet Torun. “ULTRASOUND-ASSISTED EXTRACTION OF NATURAL ANTIOXIDANTS FROM THE HAZELNUT SKIN: OPTIMIZATION AND COMPARISION WITH CONVENTIONAL METHOD”. Gıda, vol. 49, no. 2, 2024, pp. 326-41, doi:10.15237/gida.GD24025.
Vancouver Özdemir M, Torun M. ULTRASOUND-ASSISTED EXTRACTION OF NATURAL ANTIOXIDANTS FROM THE HAZELNUT SKIN: OPTIMIZATION AND COMPARISION WITH CONVENTIONAL METHOD. GIDA. 2024;49(2):326-41.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/