Research Article
BibTex RIS Cite

ÇİNKO-KLOROFİL TÜREVLERİNİN PEYNİR ALTI SUYU PROTEİNİ İLE EMÜLSİYON/SOĞUK JELLEŞME YÖNTEMİ İLE ENKAPSÜLASYONU

Year 2018, , 174 - 183, 08.02.2018
https://doi.org/10.15237/gida.321167

Abstract

Ispanakta
bulunan çinko-klorofil (Zn-klorofil) türevlerinin peynir altı suyu protein
kullanılarak emülsiyon/soğuk-tip jelleşme yöntemi ile enkapsülasyonu, kararlı
yapıda doğal yeşil renklendirici eldesinde umut verici alternative bir yöntem
olarak görülmektedir. Emülsiyon sisteminde, peynir altı suyu proteininin
çökelmesi nedeniyle en önemli parameter pH olarak belirlenmiştir. %1 ve 5
oranında Zn-klorofil türevleri içeren mikroboncuklar küresel bir yapıya
sahipken, %10 oranında Zn-klorofil türevleri içeren mikroboncukların üretimi
peynir altı suyu proteinlerinin izoelektrik noktaya (pI= 4.9) ulaşması
nedeniyle çökelme ile sonuçlanmıştır. Enkapsülasyon verimliliği aktif maddenin
farklı yükleri için hesaplanmış, en yüksek değer %1 oranında Zn-klorofil
türevleri içeren mikroboncuklar ile elde edilmiştir. 4 °C’de 3 aylık depolama
süresi sonunda en iyi renk stabilitesi (L*=31.25 ± 0.06, a*= -2.91 ± 0.11 ve
b*= 25.85 ± 0.08) ve %74 oranında korunan toplam klorofil içeriği değerlerine %5
oranında Zn-klorofil türevleri içeren mikroboncuklar ile ulaşılmıştır.

References

  • Association of Official Analytical Chemists. Method 999.10. Official Methods of Analysis of AOAC International. Methods 18th.Ed. AOAC International, Gaithersburg, MD, USA. 2005.
  • Banerjee S, Bhattacharya S. Food gels: gelling process and new applications. Crit Rev Food Sci Nutr 2012; 52: 334-346.
  • Barbut S, Foegeding E. Ca2+ Induced gelation of pre-heated whey protein isolate. J Food Sci 1993; 58: 867-871.
  • Betz M, Kulozik U. Microencapsulation of bioactive bilberry anthocyanins by means of whey protein gels. Procedia Food Sci 2011; 1: 2047 – 2056.
  • Britten M, Giroux H. Acid-induced gelation of whey protein polymers: effects of pH and calcium concentration during polymerization. Food Hydrocol 2001; 15: 609-617.
  • Britton G, Hornero-Méndez D. Carotenoids and colour in fruit and vegetables. Tomás-Barberán F, Robins R. Phytochemistry of Fruit and Vegetables. Oxford: Clarendon Press. 1997; 11-27.
  • Chanamai R, McClements D. Comparison of gum arabic, modified starch, and whey protein isolate as emulsifiers: influence of pH, CaCl2 and temperature. J of Food Sci 2002; 67 (1): 120-125.
  • Charoen R, Jangchud A, Jangchud K, Harnsilawat T, Naivikul O, McClements D. Influence of Biopolymer Emulsifier Type on Formation and Stability of Rice Bran Oil‐in‐Water Emulsions: Whey Protein, Gum Arabic, and Modified Starch. J of Food Sci 2011; 76 (1): 165-172.
  • Dashwood R. Chlorophylls as anticarcinogens (Review). Int J Oncol 1997; 10 (4): 721-728.
  • Egan T, Jacquier J, Rosenberg Y, Rosenberg M. Cold-set whey protein microgels for the stable immobilization of lipids. Food Hydrocol 2013; 31: 317-324.
  • Egan T, O’Riordan D, O’Sullivan M, Jacquier J. Cold-set whey protein microgels as pH modulated immobilisation matrices for charged bioactives. Food Chem 2014; 156: 197–203.
  • Ferruzzi M, Blakeslee J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr Res 2007; 27 (1): 1-12.
  • Giusti M. Radish anthocyanin extract as a natural red colorant for maraschino cherries. J Food Sci 1996; 61 (4): 688-694. Koca N, Karadeniz F, Burdurlu H. Effects of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chem 2007; 100: 609-615.
  • Laborde L, Von Elbe J. Chlorophyll degradation and zinc complex formation with chlorophyll derivatives in heated green vegetables. J Agric Food Chem 1994; 42: 1100-1103.
  • Lee S, Rosenberg M. Whey Protein-based Microcapsules Prepared by Double Emulsification and Heat Gelation. Lebenson Wiss Technol 2000; 33: 80-88.
  • Lefevre T, Subirade M. Molecular differences in the formation and structure of fine-stranded and particulate β-lactoglobulin gels. Biopolym 2000; 54: 578–86.
  • Leunda M, Guerrero S, Alzamora S. Color and chlorophyll content changes of minimally processed kiwifruit. J Food Process Preserv 2000; 24: 17-38.
  • Leung V, Remondetto G, Subirade M. Cold gelation of β-lactoglobulin oil in water emulsions. Food Hydrocol 2005; 18: 269-278. McClements D. Food Emulsions: Principles, Practice and Technology. Boca Raton, Florida: CRC Press. 2005.
  • Nicolai T, Britten M, Schmitt C. β-Lactoglobulin and WPI aggregates: formation, structure and applications. Food Hydrocol 2011; 25: 1945-1962.
  • Nielsen, 2016. http://www.nielsen.com/content/dam/nielsenglobal/eu/docs/pdf/Global%20Ingredient%20and%20Out-of-Home%20Dining%20Trends%20Report%20FINAL%20(1).pdf (Retrieved from 16.12.2016). Oztop M, McCarthy K, McCarthy M, Rosenberg M. Uptake of Divalent Ions by Heat-Set Whey Protein Gels. J Food Sci 2012; 77 (2): 68-73.
  • Özkan G, Bilek SE. Enzyme-assisted extraction of stabilized chlorophyll from spinach. Food Chem 2015; 176: 152-157.
  • Özkan G, Bilek SE. Microencapsulation of natural food colourants. Int J Nutr Food Sci 2014; 3 (3): 145-156.
  • Porrarud S, Pranee A. Microencapsulation of Zn-chlorophyll pigment from Pandan leaf. Int Food Res J 2010; 17: 1031-1042.
  • Qian C, Decker E, Xiao H, McClements D. Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chem 2012; 132 (3): 1221-1229.
  • Rodriguez-Amaya DB. Natural food pigments and colorants. Curr Opin Food Sci 2016; 7: 20-26.
  • Rosenberg M, Lee S. Microstructure of whey protein/anhydrous milkfat emulsions. Food Struct 1993; 12: 267-274.
  • Rosenberg M, Young SL. Whey proteins as microencapsulating agents. Microencapsulation of anhydrous milkfat structure evaluation. Food Struct 1993; 12: 31-41.
  • Rosenberg M. Milk derived whey protein-based microencapsulating agents and a method of use. US Patent Number, 1991; 5: 601, 760.
  • Shu B, Yu W, Zhao Y, Liu X. Study on microencapsulation of lycopene by spray-drying. J of Food Eng 2006; 76: 664–669.
  • Tonucci L, Von Elbe J. Kinetics of the formation of zinc complexes of chlorophyll derivatives. J Agric Food Chem 1992; 40: 2341-2344.
  • Trifković K, Milašinović N, Djordjević V, Kalagasidis-Krušić M, Knežević-Jugović Z. Chitosan microbeads for encapsulation of thyme (Thymus serpyllum L.) polyphenols. Carbohydr Polym 2014; 111: 901-907.
  • Vernon L. Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal Chem 1960; 32: 1144–1150.
  • Wichchukit S, Oztop M, McCarthy M, McCarthy K. Whey protein/alginate beads as carriers of a bioactive component. Food Hydrocol 2013; 33: 66-73.
  • Young S, Sarada X, Rosenberg M. Microencapsulating propertiesmof whey proteins, 1. Microencapsulation of anhydrous milk fat. J Dairy Sci 1993; 76: 2868-2877.

ENCAPSULATION OF ZINC-CHLOROPHYLL DERIVATIVES IN WHEY PROTEIN MATRIX BY EMULSION/COLD-SET GELATION

Year 2018, , 174 - 183, 08.02.2018
https://doi.org/10.15237/gida.321167

Abstract

Encapsulation of spinach zinc-chlorophyll (Zn-chlorophyll) derivatives in whey
protein by emulsion/cold-set gelation seems to be a promising alternative
method for handling stabilized green natural colorant. The main important
parameter was the pH of the emulsion system that caused precipitation of the whey
protein. The shape of the microbeads containing 1 and 5% Zn-chlorophyll derivatives
were spherical, while microbeads containing 10% Zn-chlorophyll derivatives production
concluded with precipitation of whey protein due to reaching isoelectric point
(pI= 4.9). Encapsulation efficiency was determined for different loads of
active material, whereas, the highest value was obtained for 1% Zn-chlorophyll
derivatives containing microbeads. Microbeads with 5% Zn-chlorophyll
derivatives showed the best stability for color values (L*=31.25 ± 0.06, a*=
-2.91 ± 0.11, and b*= 25.85 ± 0.08), and a 74% protection of the total
chlorophyll content was maintained at the end of 3 months of storage at 4 °C.  

References

  • Association of Official Analytical Chemists. Method 999.10. Official Methods of Analysis of AOAC International. Methods 18th.Ed. AOAC International, Gaithersburg, MD, USA. 2005.
  • Banerjee S, Bhattacharya S. Food gels: gelling process and new applications. Crit Rev Food Sci Nutr 2012; 52: 334-346.
  • Barbut S, Foegeding E. Ca2+ Induced gelation of pre-heated whey protein isolate. J Food Sci 1993; 58: 867-871.
  • Betz M, Kulozik U. Microencapsulation of bioactive bilberry anthocyanins by means of whey protein gels. Procedia Food Sci 2011; 1: 2047 – 2056.
  • Britten M, Giroux H. Acid-induced gelation of whey protein polymers: effects of pH and calcium concentration during polymerization. Food Hydrocol 2001; 15: 609-617.
  • Britton G, Hornero-Méndez D. Carotenoids and colour in fruit and vegetables. Tomás-Barberán F, Robins R. Phytochemistry of Fruit and Vegetables. Oxford: Clarendon Press. 1997; 11-27.
  • Chanamai R, McClements D. Comparison of gum arabic, modified starch, and whey protein isolate as emulsifiers: influence of pH, CaCl2 and temperature. J of Food Sci 2002; 67 (1): 120-125.
  • Charoen R, Jangchud A, Jangchud K, Harnsilawat T, Naivikul O, McClements D. Influence of Biopolymer Emulsifier Type on Formation and Stability of Rice Bran Oil‐in‐Water Emulsions: Whey Protein, Gum Arabic, and Modified Starch. J of Food Sci 2011; 76 (1): 165-172.
  • Dashwood R. Chlorophylls as anticarcinogens (Review). Int J Oncol 1997; 10 (4): 721-728.
  • Egan T, Jacquier J, Rosenberg Y, Rosenberg M. Cold-set whey protein microgels for the stable immobilization of lipids. Food Hydrocol 2013; 31: 317-324.
  • Egan T, O’Riordan D, O’Sullivan M, Jacquier J. Cold-set whey protein microgels as pH modulated immobilisation matrices for charged bioactives. Food Chem 2014; 156: 197–203.
  • Ferruzzi M, Blakeslee J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr Res 2007; 27 (1): 1-12.
  • Giusti M. Radish anthocyanin extract as a natural red colorant for maraschino cherries. J Food Sci 1996; 61 (4): 688-694. Koca N, Karadeniz F, Burdurlu H. Effects of pH on chlorophyll degradation and colour loss in blanched green peas. Food Chem 2007; 100: 609-615.
  • Laborde L, Von Elbe J. Chlorophyll degradation and zinc complex formation with chlorophyll derivatives in heated green vegetables. J Agric Food Chem 1994; 42: 1100-1103.
  • Lee S, Rosenberg M. Whey Protein-based Microcapsules Prepared by Double Emulsification and Heat Gelation. Lebenson Wiss Technol 2000; 33: 80-88.
  • Lefevre T, Subirade M. Molecular differences in the formation and structure of fine-stranded and particulate β-lactoglobulin gels. Biopolym 2000; 54: 578–86.
  • Leunda M, Guerrero S, Alzamora S. Color and chlorophyll content changes of minimally processed kiwifruit. J Food Process Preserv 2000; 24: 17-38.
  • Leung V, Remondetto G, Subirade M. Cold gelation of β-lactoglobulin oil in water emulsions. Food Hydrocol 2005; 18: 269-278. McClements D. Food Emulsions: Principles, Practice and Technology. Boca Raton, Florida: CRC Press. 2005.
  • Nicolai T, Britten M, Schmitt C. β-Lactoglobulin and WPI aggregates: formation, structure and applications. Food Hydrocol 2011; 25: 1945-1962.
  • Nielsen, 2016. http://www.nielsen.com/content/dam/nielsenglobal/eu/docs/pdf/Global%20Ingredient%20and%20Out-of-Home%20Dining%20Trends%20Report%20FINAL%20(1).pdf (Retrieved from 16.12.2016). Oztop M, McCarthy K, McCarthy M, Rosenberg M. Uptake of Divalent Ions by Heat-Set Whey Protein Gels. J Food Sci 2012; 77 (2): 68-73.
  • Özkan G, Bilek SE. Enzyme-assisted extraction of stabilized chlorophyll from spinach. Food Chem 2015; 176: 152-157.
  • Özkan G, Bilek SE. Microencapsulation of natural food colourants. Int J Nutr Food Sci 2014; 3 (3): 145-156.
  • Porrarud S, Pranee A. Microencapsulation of Zn-chlorophyll pigment from Pandan leaf. Int Food Res J 2010; 17: 1031-1042.
  • Qian C, Decker E, Xiao H, McClements D. Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chem 2012; 132 (3): 1221-1229.
  • Rodriguez-Amaya DB. Natural food pigments and colorants. Curr Opin Food Sci 2016; 7: 20-26.
  • Rosenberg M, Lee S. Microstructure of whey protein/anhydrous milkfat emulsions. Food Struct 1993; 12: 267-274.
  • Rosenberg M, Young SL. Whey proteins as microencapsulating agents. Microencapsulation of anhydrous milkfat structure evaluation. Food Struct 1993; 12: 31-41.
  • Rosenberg M. Milk derived whey protein-based microencapsulating agents and a method of use. US Patent Number, 1991; 5: 601, 760.
  • Shu B, Yu W, Zhao Y, Liu X. Study on microencapsulation of lycopene by spray-drying. J of Food Eng 2006; 76: 664–669.
  • Tonucci L, Von Elbe J. Kinetics of the formation of zinc complexes of chlorophyll derivatives. J Agric Food Chem 1992; 40: 2341-2344.
  • Trifković K, Milašinović N, Djordjević V, Kalagasidis-Krušić M, Knežević-Jugović Z. Chitosan microbeads for encapsulation of thyme (Thymus serpyllum L.) polyphenols. Carbohydr Polym 2014; 111: 901-907.
  • Vernon L. Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal Chem 1960; 32: 1144–1150.
  • Wichchukit S, Oztop M, McCarthy M, McCarthy K. Whey protein/alginate beads as carriers of a bioactive component. Food Hydrocol 2013; 33: 66-73.
  • Young S, Sarada X, Rosenberg M. Microencapsulating propertiesmof whey proteins, 1. Microencapsulation of anhydrous milk fat. J Dairy Sci 1993; 76: 2868-2877.
There are 34 citations in total.

Details

Primary Language English
Other ID GD17056
Journal Section Articles
Authors

Gülay Özkan

Seda Ersus Bilek

Publication Date February 8, 2018
Published in Issue Year 2018

Cite

APA Özkan, G., & Ersus Bilek, S. (2018). ENCAPSULATION OF ZINC-CHLOROPHYLL DERIVATIVES IN WHEY PROTEIN MATRIX BY EMULSION/COLD-SET GELATION. Gıda, 43(1), 174-183. https://doi.org/10.15237/gida.321167
AMA Özkan G, Ersus Bilek S. ENCAPSULATION OF ZINC-CHLOROPHYLL DERIVATIVES IN WHEY PROTEIN MATRIX BY EMULSION/COLD-SET GELATION. GIDA. January 2018;43(1):174-183. doi:10.15237/gida.321167
Chicago Özkan, Gülay, and Seda Ersus Bilek. “ENCAPSULATION OF ZINC-CHLOROPHYLL DERIVATIVES IN WHEY PROTEIN MATRIX BY EMULSION/COLD-SET GELATION”. Gıda 43, no. 1 (January 2018): 174-83. https://doi.org/10.15237/gida.321167.
EndNote Özkan G, Ersus Bilek S (January 1, 2018) ENCAPSULATION OF ZINC-CHLOROPHYLL DERIVATIVES IN WHEY PROTEIN MATRIX BY EMULSION/COLD-SET GELATION. Gıda 43 1 174–183.
IEEE G. Özkan and S. Ersus Bilek, “ENCAPSULATION OF ZINC-CHLOROPHYLL DERIVATIVES IN WHEY PROTEIN MATRIX BY EMULSION/COLD-SET GELATION”, GIDA, vol. 43, no. 1, pp. 174–183, 2018, doi: 10.15237/gida.321167.
ISNAD Özkan, Gülay - Ersus Bilek, Seda. “ENCAPSULATION OF ZINC-CHLOROPHYLL DERIVATIVES IN WHEY PROTEIN MATRIX BY EMULSION/COLD-SET GELATION”. Gıda 43/1 (January 2018), 174-183. https://doi.org/10.15237/gida.321167.
JAMA Özkan G, Ersus Bilek S. ENCAPSULATION OF ZINC-CHLOROPHYLL DERIVATIVES IN WHEY PROTEIN MATRIX BY EMULSION/COLD-SET GELATION. GIDA. 2018;43:174–183.
MLA Özkan, Gülay and Seda Ersus Bilek. “ENCAPSULATION OF ZINC-CHLOROPHYLL DERIVATIVES IN WHEY PROTEIN MATRIX BY EMULSION/COLD-SET GELATION”. Gıda, vol. 43, no. 1, 2018, pp. 174-83, doi:10.15237/gida.321167.
Vancouver Özkan G, Ersus Bilek S. ENCAPSULATION OF ZINC-CHLOROPHYLL DERIVATIVES IN WHEY PROTEIN MATRIX BY EMULSION/COLD-SET GELATION. GIDA. 2018;43(1):174-83.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/